Software updates slowing you down?

February 11, 2020

We've all shared the frustration -- software updates that are intended to make our applications run faster inadvertently end up doing just the opposite. These bugs, dubbed in the computer science field as performance regressions, are time-consuming to fix since locating software errors normally requires substantial human intervention.

To overcome this obstacle, researchers at Texas A&M University, in collaboration with computer scientists at Intel Labs, have now developed a complete automated way of identifying the source of errors caused by software updates. Their algorithm, based on a specialized form of machine learning called deep learning, is not only turnkey, but also quick, finding performance bugs in a matter of a few hours instead of days.

"Updating software can sometimes turn on you when errors creep in and cause slowdowns. This problem is even more exaggerated for companies that use large-scale software systems that are continuously evolving," said Dr. Abdullah Muzahid, assistant professor in the Department of Computer Science and Engineering. "We have designed a convenient tool for diagnosing performance regressions that is compatible with a whole range of software and programming languages, expanding its usefulness tremendously."

The researchers described their findings in the 32nd edition of Advances in Neural Information Processing Systems from the proceedings of the Neural Information Processing Systems conference in December.

To pinpoint the source of errors within a software, debuggers often check the status of performance counters within the central processing unit. These counters are lines of code that monitor how the program is being executed on the computer's hardware in the memory, for example. So, when the software runs, counters keep track of the number of times it accesses certain memory locations, the time it stays there and when it exits, among other things. Hence, when the software's behavior goes awry, counters are again used for diagnostics.

"Performance counters give an idea of the execution health of the program," said Muzahid. "So, if some program is not running as it is supposed to, these counters will usually have the telltale sign of anomalous behavior."

However, newer desktops and servers have hundreds of performance counters, making it virtually impossible to keep track of all of their statuses manually and then look for aberrant patterns that are indicative of a performance error. That is where Muzahid's machine learning comes in.

By using deep learning, the researchers were able to monitor data coming from a large number of the counters simultaneously by reducing the size of the data, which is similar to compressing a high-resolution image to a fraction of its original size by changing its format. In the lower dimensional data, their algorithm could then look for patterns that deviate from normal.

When their algorithm was ready, the researchers tested if it could find and diagnose a performance bug in a commercially available data management software used by companies to keep track of their numbers and figures. First, they trained their algorithm to recognize normal counter data by running an older, glitch-free version of the data management software. Next, they ran their algorithm on an updated version of the software with the performance regression. They found that their algorithm located and diagnosed the bug within a few hours. Muzahid said this type of analysis could take a considerable amount of time if done manually.

In addition to diagnosing performance regressions in software, Muzahid noted that their deep learning algorithm has potential uses in other areas of research as well, such as developing the technology needed for autonomous driving.

"The basic idea is once again the same, that is being able to detect an anomalous pattern," said Muzahid. "Self-driving cars must be able to detect whether a car or a human is in front of it and then act accordingly. So, it's again a form of anomaly detection and the good news is that is what our algorithm is already designed to do."

Other contributors to the research include Dr. Mejbah Alam, Dr. Justin Gottschlich, Dr. Nesime Tatbul, Dr. Javier Turek and Dr. Timothy Mattson from Intel Labs.
-end-


Texas A&M University

Related Algorithm Articles from Brightsurf:

CCNY & partners in quantum algorithm breakthrough
Researchers led by City College of New York physicist Pouyan Ghaemi report the development of a quantum algorithm with the potential to study a class of many-electron quantums system using quantum computers.

Machine learning algorithm could provide Soldiers feedback
A new machine learning algorithm, developed with Army funding, can isolate patterns in brain signals that relate to a specific behavior and then decode it, potentially providing Soldiers with behavioral-based feedback.

New algorithm predicts likelihood of acute kidney injury
In a recent study, a new algorithm outperformed the standard method for predicting which hospitalized patients will develop acute kidney injury.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

QUT algorithm could quash Twitter abuse of women
Online abuse targeting women, including threats of harm or sexual violence, has proliferated across all social media platforms but QUT researchers have developed a sophisticated statistical model to identify misogynistic content and help drum it out of the Twittersphere.

New learning algorithm should significantly expand the possible applications of AI
The e-prop learning method developed at Graz University of Technology forms the basis for drastically more energy-efficient hardware implementations of Artificial Intelligence.

Algorithm predicts risk for PTSD after traumatic injury
With high precision, a new algorithm predicts which patients treated for traumatic injuries in the emergency department will later develop posttraumatic stress disorder.

New algorithm uses artificial intelligence to help manage type 1 diabetes
Researchers and physicians at Oregon Health & Science University have designed a method to help people with type 1 diabetes better manage their glucose levels.

A new algorithm predicts the difficulty in fighting fire
The tool completes previous studies with new variables and could improve the ability to respond to forest fires.

New algorithm predicts optimal materials among all possible compounds
Skoltech researchers have offered a solution to the problem of searching for materials with required properties among all possible combinations of chemical elements.

Read More: Algorithm News and Algorithm Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.