Nav: Home

Local genetic adaption helps sorghum crop hide from witchweed

February 11, 2020

Sorghum crops in areas where the agricultural parasite striga, also known as witchweed, is common are more likely to have genetic adaptations to help them resist the parasite, according to new research led by Penn State scientists. Changes to the LGS1 gene affect some of the crop's hormones, making it harder for parasites to find in the soil, at least in some regions. The changes, however, may come at a cost, affecting photosynthesis-related systems and perhaps growth. The new study by an international team of researchers appears online February 11, 2020, in the journal Proceedings of the National Academy of Sciences and may eventually inform strategies for managing the parasite.

Witchweed is one of the greatest threats to food security in Africa, causing billions of dollars in crop losses annually. It has a variety of hosts, including sorghum, the world's fifth most important cereal crop.

"We wanted to know if sorghum plants in areas with high parasite prevalence were locally adapted by having LGS1 mutations," said Jesse Lasky, assistant professor of biology at Penn State and senior author of the paper. "We often think about local adaptation of agricultural crops with regard to factors like temperature, drought, or salinity. For example, if plants in a particularly dry region were locally adapted to have genes associated with drought-tolerance, we could potentially breed plants with those genes to resist drought. We wanted to know if you could see this same kind of local adaptation to something biotic, like a parasite."

The researchers modeled the prevalence of witchweed across Africa and compared the presence of LGS1 mutations thought to confer some resistance in sorghum. They found that these mutations were more common in areas with high parasite prevalence, suggesting that sorghum plants in those areas may be locally adapted to deal with the parasite.

"The LGS1 mutations were widespread across Africa where parasites were most common, which suggests they are beneficial," said Emily Bellis, postdoctoral researcher at Penn State at the time of the study and first author of the paper. Bellis is currently an assistant professor of bioinformatics at Arkansas State University. "But these mutations were not very common, and nearly absent outside of parasite-prone regions. This indicates that there may also be a cost, or tradeoff, to having these mutations."

To better understand the effects of the LGS1 mutations, members of the research team at Corteva Agriscience used CRISPR-Cas9 gene-editing technology to replicate the mutations in the lab. The loss of LGS1 function did appear to confer resistance to witchweed in their experiments, as parasites had germination rates that were low or even zero, suggesting the parasites were not as successful at finding the crop to reproduce. But parasites collected from different geographic locations in Africa were affected in different ways.

"Germination of parasites from a population in West Africa was effectively shut down in both nutrient-rich and nutrient-poor conditions, but we still saw germination up to about 10% for a population in East Africa when nutrients were limited," said Bellis. "That is definitely an improvement, but there can be thousands of parasites in the soil, so even 10% germination can be problematic, especially in the smallholder farms where these crops are predominantly grown."

LGS1 mutations are known to affect strigolactone hormones that sorghum releases from its roots. Because the parasite uses these hormones to find sorghum, altering the hormones makes the plant mostly invisible to the parasite. But strigolactones are also important for communication with mycorrhizal fungi, which play an important role in the plant's acquisition of nutrients. The new study found that loss of LGS1 function in the modified plants also affected systems related to photosynthesis and subtly affected growth.

"It may be that plants with LGS1 mutations are better at hiding from the parasites, but are less productive," said Lasky. "This potential tradeoff might explain the relatively low prevalence of these mutations in sorghum across Africa."

The researchers also identified several mutations in other genes that are related to parasite prevalence, which might reflect local adaptation. The researchers plan to investigate these genes--some of which are involved in cell-wall strengthening, to see if they may also confer resistance to the parasite.

"We eventually would like to look at other agriculturally important host plants of striga in Africa to ask similar questions," said Lasky. "If we do indeed see local adaptation to the parasite and find genes that confer resistance with few tradeoffs, we may be able to capitalize on that from a management perspective."
In addition to Lasky and Bellis, the research team includes Elizabeth Kelly, Claire Lorts, Victoria DeLeo and Claude dePamphilis at Penn State; Huirong Gao and N. Doane Chilcoat at Corteva Agriscience; Germinal Rouhan at Sorbonne Université in France; Andrew Budden at the Royal Botanic Gardens Kew in the United Kingdom; Govinal Badiger Bhaskara and Thomas Juenger at the University of Texas; Zhenbin Hu and Geoffrey Morris at Kansas State University; Robert Muscarella at Uppsala University in Sweden; Michael Timko at the University of Virginia; Baloua Nebie at the International Crops Research Institute for the Semi-Arid Tropics in Mali; and Steven Runo at Kenyatta University in Kenya. This work was supported in part by the National Science Foundation, the Advanced Research Projects Agency-Energy, and the U.S. Department of Energy.

Penn State

Related Parasites Articles:

Feeding bluebirds helps fend off parasites
If you feed the birds in your backyard, you may be doing more than just making sure they have a source of food: you may be helping baby birds give parasites the boot.
Scientists discover how malaria parasites import sugar
Researchers at Stockholm University has established how sugar is taken up by the malaria parasite, a discovery with the potential to improve the development of antimalarial drugs.
How malaria parasites become resistant to artemisinin antimalarial drugs
Malaria parasite mutations that inhibit the endocytoic appetite for a host's red blood cells may render them resistant to artemisinin, a widely used frontline antimalarial drug, according to a new study, which reveals a key molecular mechanism of drug resistance.
Study shows interactions between bacteria and parasites
A team at the Technical University of Munich (TUM) has completed the first study of the effects of a simultaneous infection with blood flukes (schistosomes) and the bacterium Helicobacter pylori -- a fairly common occurrence in some parts of the world.
Evolution designed by parasites
In 'Invisible Designers: Brain Evolution Through the Lens of Parasite Manipulation,' published in the September 2019 issue of The Quarterly Review of Biology, Marco Del Giudice explores an overlooked aspect of the relationship between parasites and their hosts by systematically discussing the ways in which parasitic behavior manipulation may encourage the evolution of mechanisms in the host's nervous and endocrine systems.
Airless worms: A new hope against drug-resistant parasites
Toronto scientists have uncovered a metabolic pathway that only exists in parasitic worms.
Parasites dampen beetle's fight or flight response
Beetles infected with parasitic worms put up less of a fight against simulated attacks from predators and rival males, according to a study by Felicia Ebot-Ojong, Andrew Davis and Elizabeth Jurado at the University of Georgia, USA, publishing May 22, 2019 in the open-access journal PLOS ONE.
Genome structure of malaria parasites linked to virulence
An international research team led by scientists at the University of California, Riverside, and the La Jolla Institute for Immunology has found that malaria parasite genomes are shaped by parasite-specific gene families, and that this genome organization strongly correlates with the parasite's virulence.
Parasites discovered in fossil fly pupae
Parasitic wasps existed as early as several million years ago.
Migratory animals carry more parasites, says study
Every year, billions of animals migrate across the globe, carrying parasites with them and encountering parasites through their travels.
More Parasites News and Parasites Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at