Inquiry-based labs give physics students experimental edge

February 11, 2020

ITHACA, N.Y. - New Cornell University research shows that traditional physics labs, which strive to reinforce the concepts students learn in lecture courses, can actually have a negative impact on students. At the same time, nontraditional, inquiry-based labs that encourage experimentation can improve student performance and engagement without lowering exam scores.

"Typical physics lab courses are designed to help students see or observe the physics phenomena that we typically teach in a lecture course," said senior author Natasha Holmes, the Ann S. Bowers Assistant Professor in the College of Arts and Sciences at Cornell University. "In our previous work, we had this idea that these labs weren't effective. But we were pretty sure that we could restructure the labs to get students engaging and really learning what it means to do experimental physics."

The researchers created a controlled study in which students were divided into five lab sections for the same introductory, calculus-based physics course, focusing on mechanics and special relativity. Students in all five lab sections went to the same lectures and had identical problem sets, homework and exams. However, three lab sections followed the traditional model; the remaining two sessions were inquiry-based labs, with students making their own decisions about gathering and analyzing data.

"The students in the new labs are much more active," Holmes said. "They are talking to each other, making decisions, negotiating. Compared to the traditional lab, where everyone's really doing the same thing and just following instructions, we now have all of the students doing something completely different. They're starting to be creative."

The exam scores were the same for students in the traditional and inquiry-based labs. However, the traditional lab model negatively impacted student attitudes toward experimentation and failed to engage students with high-level scientific thinking, the researchers found.

Another telling distinction: Students in traditional labs completed their tasks as quickly as possible, often breezing through the instructions and finishing the two-hour session in 30 minutes, then leaving. Students in the inquiry-based labs tended to work for the full two hours.

"We think it's teaching them to have ownership over their experiments, and they're continuing to investigate," Holmes said. "We actually had trouble kicking them out of class - which I think is a pretty good problem to have."

Holmes believes the inquiry-based lab model is applicable to other disciplines, although physics has distinct advantages over chemistry or biology, where trial-and-error experimentation could result in wasted chemicals, materials and time.
-end-
The findings were published in a paper, "Direct Measurement of the Impact of Teaching Experimentation in Physics Labs," published Feb. 10 in Physical Review X.

For additional information, see this Cornell Chronicle story.

Cornell University has dedicated television and audio studios available for media interviews supporting full HD, ISDN and web-based platforms.

Cornell University

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.