'Genetic rewiring' drives cancer's drug resistance

February 11, 2020

A tiny molecule of RNA - known as 'micro RNA' - plays a key role in 'rewiring' cancer cells so they can resist the effects of chemotherapy, a new study reveals.

The discovery opens up the possibility of creating new cancer drugs that target this micro RNA molecule, rather than more conventional treatments that block the action of proteins.

Scientists at The Institute of Cancer Research, London, found that a type of micro RNA known as MIR1249 plays a key role in allowing bile duct cancers to resist chemotherapy.

Micro RNAs, unlike other forms of RNA, don't help to translate the DNA code into proteins, but instead seem to be crucial for controlling the signalling networks within cells.

The researchers hope that MIR1249 could be a potential target for new drugs in bile duct cancer that could make chemotherapy much more effective. Bile duct cancer is very hard to treat and there is an urgent need to develop new therapies.

The researchers also believe that this mechanism driving resistance may be shared with other cancer types - raising the possibility that drugs to counteract it could have wider benefits.

The study is published in the journal Hepatology and released today (Wednesday) on Bile Duct Cancer Awareness Day. It was funded by The Institute of Cancer Research (ICR) as well as the European Union, Cancer Research UK, Pancreatic Cancer Action and the Italian Foundation for Cancer Research AIRC.

The study reveals that MIR1249 is able to 'rewire' the so-called WNT signalling network, which plays an important role in some healthy cells, and can be co-opted by cancer cells.

The WNT network is involved in the upkeep of stem cells - cells with the ability to self-renew and develop into many different cell types.

But when rewired, it seems to give cancer cells the features of stem cells, allowing them to become more resistant to treatment and able to survive the onslaught of chemotherapy.

The study, which involved mice and human tissue samples, revealed that by blocking MIR1249 activity, cancer cells became more sensitive to chemotherapy and responded better to treatment.

The researchers also found that 41 per cent of bile duct cancers had increased levels of MIR1249, suggesting it could be playing an important role within these tumours. In support of this idea, MIR1249 was also statistically associated with poorer survival outcome.

The next step will be to create drugs that could act against MIR1249, with the aim of preventing cancers from developing drug resistance and resensitising them to chemotherapy.

The ICR - a charity and research institute - is focused on understanding and combating cancer's ability to evolve and become drug resistant. It has less than £10 million still to raise for a new Centre for Cancer Drug Discovery, which will house an ambitious 'Darwinian' drug discovery programme to create new anti-evolution treatments.

Study leader Dr Chiara Braconi, who carried out the research as Clinician Scientist at The Institute of Cancer Research, London, and is now Lord Kelvin Adam Smith Reader in the Institute of Cancer Sciences at the University of Glasgow, said:

"Our study shows the crucial role played by a piece of micro RNA in rewiring the network of signals within cancer cells and helping them to resist the effects of chemotherapy. It identifies MIR1249 as a potential drug target in bile duct cancers and possibly other tumour types, and opens up what could be an exciting new avenue of treatment.

"It's remarkable how such a tiny piece of RNA can play such a significant role in rewiring cancer cells so that they can resist chemotherapy. There is growing interest in the idea of developing drugs against RNA rather than against proteins, as studies like ours show the important role of micro RNA in cell signalling."

Study co-author Professor Paul Workman, Chief Executive of The Institute of Cancer Research, London, said:

"Bile duct cancer is becoming increasingly common around the world and survival rates are very poor, so there is an urgent need to develop better therapies for people with advanced disease whose treatment stops working. This new study shows the potential of targeting molecules called micro RNAs as a new form of treatment for drug-resistant cancers.

"At the ICR, we believe overcoming cancer evolution and drug resistance is the biggest challenge we face today in the field of cancer research. Through our new Centre for Cancer Drug Discovery, we are aiming to find new 'anti-evolution' treatments that can offer long-term control or cure even for advanced cancers."

Sal Cheema, 42, from Uxbridge, who was diagnosed with stage 4 bile duct cancer in 2018, said:

"I had chemotherapy for eight months which kept my cancer at bay. But within six weeks, I was devastated to learn that the cancer had spread to my lymph nodes.

"Bile duct cancer is rare, yet the incidence is increasing and it's not known why. This cancer is also affecting younger people more and more, so it's imperative that this specific research continues - not only for bile duct but other cancers too.

"There are very few treatment options for bile duct cancer patients, so I'm elated to hear of this research and discovery as it could open up a whole new way of targeting the cancer. More targeted treatments with fewer side effects are vital - these findings are very promising for people like me."
-end-
For more information please contact Diana Cano Bordajandi in the ICR press office on 020 7153 5021 or diana.canobordajandi@icr.ac.uk. For enquiries out of hours, please call 07595 963 613.

The Institute of Cancer Research, London, is one of the world's most influential cancer research organisations.

The Institute of Cancer Research (ICR) has an outstanding record of achievement dating back more than 100 years. It provided the first convincing evidence that DNA damage is the basic cause of cancer, laying the foundation for the now universally accepted idea that cancer is a genetic disease. Today it is a world leader at identifying cancer-related genes, discovering new targeted drugs and developing new high-precision forms of radiotherapy.

The ICR is a charity and relies on support from partner organisations, funders and the general public. A college of the University of London, it is the UK's top-ranked academic institution for research quality, and provides postgraduate higher education of international distinction.

The ICR's mission is to make the discoveries that defeat cancer. For more information visit http://www.icr.ac.uk.

Institute of Cancer Research

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.