Citizen scientists discover rare cosmic pairing

February 11, 2020

Citizen scientists have uncovered a bizarre pairing of two brown dwarfs, objects much smaller than the Sun that lack enough mass for nuclear fusion. The discovery, reported in The Astrophysical Journal and confirmed by a scientific team led by astrophysicist Jackie Faherty at the American Museum of Natural History, shows that brown dwarf systems--the formation of which are still poorly understood--can be very low mass and extremely far apart yet inexorably linked.

"Astronomers would conclude that brown dwarfs separated by billions of miles would dissolve as they moved through the galaxy over time," said Faherty, a senior scientist in the Museum's Department of Astrophysics and a co-founder of the citizen science project Backyard Worlds: Planet 9, which led to the new discovery. "But we've found one that is still very much together."

The Backyard Worlds project lets anyone with a computer and an internet connection flip through images taken by NASA's Wide Field Infrared Survey Explorer (WISE) spacecraft and help astronomers identify new worlds beyond our solar system. If an object is close enough to Earth, it will appear to "jump" when multiple images taken of the same spot in the sky a few years apart are compared. The goal for Backyard Worlds volunteers--of which there are more than 50,000--is to flag the moving objects they see in these digital flipbooks for further investigation by the science team. So far, volunteers have reviewed more than 4 million flipbooks.

In June 2018, citizen scientists flipping through the Backyard Worlds images noticed an unusual pairing: one object that appeared faint but moved fast--the telltale sign of a new brown dwarf--and another brighter object moving nearby and at the same rate. The Backyard Worlds science team was alerted and became immediately excited about this rare cosmic sighting.

Brown dwarfs, sometimes called "failed stars," are spread throughout the Milky Way. They lack enough mass to sustain stable nuclear fusion but they are hot enough to glow brightest in the infrared range of the light spectrum. While stars and brown dwarfs can be found in pairs or larger groupings, finding a pair with low total mass and at a very large separation from each other is not common.

In December 2018, members of the Backyard Worlds science team used the Baade Magellan telescope in Chile outfitted with the FIRE spectrograph to confirm that the fainter source is indeed a member of one of the coldest classes of brown dwarfs: a T8. The brighter object was also confirmed as a low-temperature object: an L1. In addition, they learned that the L1 was previously observed with the European Space Agency's Gaia telescope and found to be just 78 light years from the Sun.

The researchers used the distance calculated by Gaia to precisely measure the brightness of each source and extract mass estimates. They found that the T8 object has about 34 times the mass of Jupiter, and the L1 has about 72 times the mass of Jupiter. They are separated by 341 astronomical units (1 astronomical unit is roughly the distance between the Sun and the Earth, about 93 million miles). The system is estimated to be a few billion years old.

"While there are a handful of young pairings that rival this mass and separation, there is no known older system that rivals it, which raises the question: how and why did this cosmic pair survive?" said Marc Kuchner, an astrophysicist and citizen science officer for NASA's Science Mission Directorate.

"This is an excellent example of citizen scientists on the case," Faherty said. "We are still searching for clues as to how brown dwarfs form and this system is a provocative instance of what is possible at the extremes of survivability in the Milky Way."
-end-
The Backyard Worlds project was developed by scientists at NASA, Arizona State University, the University of California Berkeley, the science crowdsourcing site Zooniverse, and the American Museum of Natural History.

AMERICAN MUSEUM OF NATURAL HISTORY (AMNH.ORG)

The American Museum of Natural History, founded in 1869 and currently celebrating its 150th anniversary, is one of the world's preeminent scientific, educational, and cultural institutions. The Museum encompasses 45 permanent exhibition halls, including those in the Rose Center for Earth and Space and the Hayden Planetarium, as well as galleries for temporary exhibitions. It is home to the Theodore Roosevelt Memorial, New York State's official memorial to its 33rd governor and the nation's 26th president, and a tribute to Roosevelt's enduring legacy of conservation. The Museum's five active research divisions and three cross-disciplinary centers support approximately 200 scientists, whose work draws on a world-class permanent collection of more than 34 million specimens and artifacts, as well as on specialized collections for frozen tissue and genomic and astrophysical data and on one of the largest natural history libraries in the world. Through its Richard Gilder Graduate School, it is the only American museum authorized to grant the Ph.D. degree and also to grant the Master of Arts in Teaching degree. Annual visitation has grown to approximately 5 million, and the Museum's exhibitions and Space Shows are seen by millions more in venues on six continents. The Museum's website, mobile apps, and massive open online courses (MOOCs) extend its scientific research and collections, exhibitions, and educational programs to additional audiences around the globe. Visit amnh.org for more information.

Follow

Become a fan of the American Museum of Natural History on Facebook at facebook.com/naturalhistory, follow us on Instagram at @AMNH, Tumblr at amnhnyc, or Twitter at @AMNH.

American Museum of Natural History

Related Brown Dwarf Articles from Brightsurf:

Maunakea telescopes confirm first brown dwarf discovered by radio observations
A collaboration between the LOw Frequency ARray (LOFAR) radio telescope in Europe, the Gemini North telescope, and the NASA InfraRed Telescope Facility (IRTF), both on Maunakea in Hawai'i, has led to the first direct discovery of a cold brown dwarf from its radio wavelength emission.

Evidence of broadside collision with dwarf galaxy discovered in Milky Way
Astrophysicists have discovered a series of telltale shell-like formations of stars in the vicinity of the Virgo constellation, evidence of a radial merger between a dwarf galaxy and the Milky Way, and the first such 'shell structures' to be found in the Milky Way.

Two planets around a red dwarf
The 'SAINT-EX' Observatory, led by scientists from the National Centre of Competence in Research NCCR PlanetS of the University of Bern and the University of Geneva, has detected two exoplanets orbiting the star TOI-1266.

A white dwarf's surprise planetary companion
For the first time, an intact, giant exoplanet has been discovered orbiting close to a white dwarf star.

Experiments replicate high densities in 'white dwarf' stars
In a project conducted at the National Ignition Facility at Lawrence Livermore National Laboratory, a research team including University of Rochester engineering professor Gilbert (Rip) Collins, simulated the crushing pressure created as white dwarf stars cease to produce their own fuel, leaving only an extremely dense core.

Super-Earths discovered orbiting nearby red dwarf
The nearest exoplanets to us provide the best opportunities for study, including searching for evidence of life outside the Solar System.

Citizen scientists spot closest young brown dwarf disk yet
Citizen scientists spot a brown dwarf disk that is the closest young system yet discovered.

Measuring the wind speed on a brown dwarf
Strong winds blow high in the atmosphere of the brown dwarf 2MASS J1047+21, according to a new study, which presents a simple method to deduce the windspeed in other brown dwarf atmospheres, too.

Astronomers measure wind speed on a brown dwarf
Using VLA and Spitzer observations, astronomers are able to determine wind speeds on a brown dwarf for the first time.

Observed: An occultation of a brown dwarf by another
An international team of astronomers in the project SPECULOOS, dedicated to the search for habitable planets, with scientists participating from the Instituto de AstrofĂ­sica de Canarias (IAC) has discovered an eclipse (termed an occultation) in a peculiar brown dwarf formed by two stars orbiting around each other.

Read More: Brown Dwarf News and Brown Dwarf Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.