Wake-up call for neural stem cells

February 11, 2021

SINGAPORE, 10 February 2021 - Researchers studying an enzyme in fruit fly larvae have found that it plays an important role in waking up brain stem cells from their dormant 'quiescent' state, enabling them to proliferate and generate new neurons. Published in the journal EMBO Reports, the study by Duke-NUS Medical School, Singapore, could help clarify how some neurodevelopmental disorders such as autism and microcephaly occur.

Quiescent neural stem cells in the fruit fly larval brainPr-set7 is an enzyme involved in maintaining genome stability, DNA repair and cell cycle regulation, as well as turning various genes on or off. This protein, which goes by a few different names, has remained largely unchanged as species have evolved. Professor Wang Hongyan, a professor and deputy director at Duke-NUS' Neuroscience and Behavioural Disorders Programme, and her colleagues set out to understand the protein's function during brain development.

"Genetic variants of the human version of Pr-set7 are associated with neurodevelopmental disorders, with typical symptoms including intellectual disability, seizures and developmental delay," explained Professor Wang. "Our study is the first to show that Pr-set7 promotes neural stem cell reactivation and, therefore, plays an important role in brain development."

Neural stem cells normally oscillate between states of quiescence and proliferation. Maintaining an equilibrium between the two is very important. Most neural stem cells are quiescent in adult mammalian brains. They are reactivated to generate new neurons in response to stimuli, such as injury, the presence of nutrients or exercise. However, neural stem cells gradually lose their capacity to proliferate with age and in response to stress, and anxiety.

Professor Wang and her colleagues studied what happened when the gene coding for Pr-set7 is turned off in larval fruit fly brains. They found it caused a delay in the reactivation of neural stem cells from their quiescent state. To reactivate neural stem cells, Pr-set7 needs to turn on at least two genes: cyclin-dependent kinase 1 (cdk1) and earthbound 1 (Ebd1). The scientists found that overexpressing the proteins coded by these genes led to the reactivation of neural stem cells even when the Pr-set7 gene was turned off. These findings show that Pr-set7 binds to the cdk1 and Ebd1 genes to activate a signalling pathway that reactivates neural stem cells from their quiescent state.

"Since Pr-set7 is conserved across species, our findings could contribute to the understanding of the roles of its mammalian counterpart in neural stem cell proliferation and its associated neurodevelopmental disorders," said Prof Wang.

Professor Patrick Casey, Senior Vice-Dean for Research at Duke-NUS, commented: "With this latest study, Professor Wang's fundamental research in neuroscience has yielded valuable insights into several neurodevelopmental disorders; insights that have the potential to improve the way we care for people with such disorders."

The scientists are now extrapolating this study to understand the roles of the mammalian and human forms of Pr-set7, called SETD8 and KMT5A respectively, in brain development.
-end-
EMBO Reports is published by the European Molecular Biology Organization (EMBO), which elected Prof Wang as an Associate Member in July 2020, a lifetime honour reserved for leading scientists in recognition of their research excellence and outstanding accomplishments. Prof Wang became the third Singapore-based scientist to become an EMBO Associate Member, based on her extensive academic and research contributions in the field of neuroscience.

Duke-NUS Medical School

Related Neural Stem Cells Articles from Brightsurf:

Latent lineage potential in neural stem cells enables spinal cord repair in mice
Spinal stem cells in mice can be reprogrammed to generate protective oligodendrocytes after spinal cord injury, enhancing neural repair, according to a new study.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Dormant neural stem cells in fruit flies activate to generate new brain cells
Researchers in Singapore have discovered the mechanism behind how neural stem cells in fruit flies are activated to stimulate the generation of new brain cells.

New mechanisms regulating neural stem cells
The use of stem cells to repair organs is one of the foremost goals of modern regenerative medicine.

Human blood cells can be directly reprogrammed into neural stem cells
Scientists from the German Cancer Research Center (DKFZ) and the stem cell institute HI-STEM* in Heidelberg have succeeded for the first time in directly reprogramming human blood cells into a previously unknown type of neural stem cell.

The protein Matrin-3 determines the fate of neural stem cells in brain development
A Japanese research group has discovered a new neurogenic mechanism responsible for brain development.

Scientists grow functioning human neural networks in 3D from stem cells
A team of researchers has developed three-dimensional (3D) human tissue culture models for the central nervous system that mimic structural and functional features of the brain and demonstrate neural activity sustained over a period of many months.

When it comes to regrowing tails, neural stem cells are the key
It's a longstanding mystery why salamanders can perfectly regenerate their tails whereas lizard tails grow back all wrong.

Created line of spinal cord neural stem cells shows diverse promise
Researchers at University of California San Diego School of Medicine report that they have successfully created spinal cord neural stem cells (NSCs) from human pluripotent stem cells (hPSCs) that differentiate into a diverse population of cells capable of dispersing throughout the spinal cord and can be maintained for long periods of time.

In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.

Read More: Neural Stem Cells News and Neural Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.