New insights to past ecosystems are now available based on pollen and plant traits

February 11, 2021

EUGENE, Ore. -- Feb. 11, 2021 -- Researchers have mined and combined information from two databases to link pollen and key plant traits to generate confidence in the ability to reconstruct past ecosystem services.

The approach provides a new tool to that can be used to understand how plants performed different benefits useful for humans over the past 21,000 years, and how these services responded to human and climate disturbances, including droughts and fires, said Thomas Brussel, a postdoctoral researcher in the University of Oregon's Department of Geography.

The approach is detailed in a paper published online Jan. 13 in the journal Frontiers in Ecology and Evolution.

Ultimately, Brussel said, the combined information could enhance decisions about conservation to allow regional ecosystem managers to continue to provide goods and services, such as having plants that protect hillsides from erosion or help purify water, based on their relationship with climate changes in the past.

For example, he said, an ecosystem's history may indicate that plants have previously withstood similar disruptions and could continue to thrive through preservation techniques.

Pollen cores have long helped scientists study environmental and ecological changes in a given location that have occurred because of climate changes and wildfires over recent geologic time. Combining pollen records to plant traits provides a picture of how well ecosystems have functioned under different scenarios, Brussel said.

"The biggest finding in this study is that researchers can now be confident that transforming pollen into the processes that ecosystems undergo works," he said. "With this information, we can now explore new questions that were previously unanswerable and provide positive guidance on how we can conserve and manage landscapes and biodiversity."

Brussel began pursuing the approach as a doctoral student at the University of Utah in the emerging field of functional paleoecology. Initial reception to the approach, when presented at conferences, drew interest but also calls for proof that the idea is possible, Brussel said. The paper, co-authored with his Utah mentor Simon Christopher Brewer, provides a proof-of-concept that his approach works.

For the study, Brussel and Brewer merged publicly available records for surface pollen samples found in the Neotoma Paleoecology Database and plant traits, specifically leaf area, plant height and seed mass, from the Botanical Information and Ecology Network.

They then restricted their results to only plants native to ecosystems from Mexico to Canada by combing through the U.S. Department of Agriculture's PLANTS Database and a compilation of all native plants in Mexico.

The resulting data for North America covers some 1,300 individual sites and includes 9.5 million plant height measurements for 2,146 species, 13,103 leaf area details from 1,016 species, and 16,621 seed mass data from 3,580 species.

The information, Brussel said, provides extensive details on the fitness of ecosystems that should help researchers study the mechanisms of changes in carbon or water cycling related to climate change.

"Our work is extremely relevant to modern climate change," he said. "The past houses all these natural experiments. The data are there. We can use that data as parallels for what may happen in the future. Using trait-based information through this approach, we can gain new insight, with confidence, that we haven't been able to get at before now."

At the UO, Brussel is working with Melissa Lucash, a research assistant professor who studies large, forested landscapes with a focus on the impacts of climate change and wildfires. Brussel is part of Lucash's research on potential climate changes being faced by Siberia's boreal forests and tundra.

He also is applying his approach to potential conservation and management strategies for some of the world's biodiversity hotspots, which are seeing a decline in plant species and wildlife as a result of global change.

"Using the newly validated approach, my idea is to assess the severity of the biodiversity degradation that has been occurring in these regions over recent millennia," Brussel said. "My end goal is to create a list of regions that can be prioritized for hotspot conservation, based on how severe an ecosystem's services have declined over time."
-end-
Media Contact:
Jim Barlow,
director of science and research communications,
541-346-3481,
jebarlow@uoregon.edu

Links:

About Thomas Brussel:
https://www.melissalucash.com/tombrussel

UO Department of Geography:
https://geography.uoregon.edu/

University of Oregon

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.