New Analysis Shows Earth's Lower Stratosphere In Synch With Solar Cycle From Pole To Pole

February 11, 1998

BOULDER--The sun's 11-year solar cycle may be the driving force behind periodic changes in temperatures and pressure heights of the earth's lower stratosphere from pole to pole, according to a new analysis presented Saturday at the annual meeting of the American Association for the Advancement of Science in Philadelphia.

Harry van Loon, a scientist at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, and Karin Labitzke of the Free University of Berlin (FUB) had previously found that a 10- to 12-year oscillation in the stratosphere of the Northern Hemisphere corresponded to four 11-year solar cycles, beginning in 1958. Now, with the help of a vast data reanalysis conducted by NCAR and the National Centers for Environmental Prediction, the two researchers have revealed a mirror image of the solar-stratosphere correlation in the Southern Hemisphere, spanning three solar cycles from 1968 to 1996. NCAR's primary sponsor is the National Science Foundation.

Solar activity cycles from one minimum to the next about every 11 years. During the intervening maximum, explosive activity on the sun intensifies, radiative output increases, and more sunspots are visible on the solar surface. As the measure of this cycle, van Loon and Labitzke used the flux in the 10.7-centimeter radio waveband, an objectively observed quantity highly correlated with the 11-year cycle. They compared these radio data with FUB's daily analyses of the stratosphere. The results show a strong correlation between the solar cycle and the 10- to 12-year oscillation of the lower stratosphere's mean temperatures and constant pressure heights above sea level.

"The emergence of a correlation in the Southern Hemisphere similar to that in the Northern Hemisphere has increased our confidence that the solar-stratospheric relationship is more than a statistical coincidence," says van Loon.

For many years scientists have tried to find an earthly link to the sun's 11-year cycle. Previous attempts have turned up humorous correspondences to the number of Republicans in the House of Representatives and the length of women's skirts. Until van Loon and Labitzke's research on the stratosphere, even serious scientific stabs at the problem eventually proved false. A solid link takes on added significance now as scientists search for a clear sun-earth connection for computer models used to predict climate change.

"The role of the sun in climate change is still an unsolved problem," says van Loon. "Any relationship between changes in solar output and what happens here on earth is important for understanding long-term climate."

The sun's output has varied about 0.1% over one solar cycle during the past several decades. Over centuries, however, larger variations may occur. For example, an extended quiet period on the sun may have chilled the earth during the Little Ice Age between the mid-1550s and mid-1800s. During the long, severe winters and short, wet summers of that period, alpine glaciers advanced down river canyons, Dutch canals froze over, and farming became difficult farther north.

Van Loon and Labitzke found that the highest correlations of the stratosphere's pressure heights with the solar cycle are concentrated in two well-defined latitude zones, which move from lower latitudes in winter to higher latitudes in summer, thus tracking the sun's interseasonal journey.

The annual mean temperatures of the lower stratosphere are well correlated with the solar cycle in the summer of either hemisphere, but only weakly correlated in winter. That is, during the summer months in either hemisphere, the average temperatures of the lower stratosphere rise and fall with the waxing and waning of the sun's energy output over its 11-year cycle.

NCAR is managed by the University Corporation for Atmospheric Research (UCAR). UCAR is a consortium of more than 60 universities offering Ph.D.s in the atmospheric or related sciences.
Find this news release on the World Wide Web at

To receive UCAR and NCAR press releases by e-mail, telephone 303-497-8601 or e-mail

National Center for Atmospheric Research/University Corporation for Atmospheric Research

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to