Filling me softly

February 12, 2014

Surgical implants are widely used in modern medicine but their effectiveness is often compromised by how our bodies react to them. Now, scientists at the University of Cambridge have discovered that implant stiffness is a major cause of this so-called foreign body reaction.

This is the first time that stiffness of implant materials has been shown to be involved in foreign body reactions. The findings - published in the journal Biomaterials - could lead to major improvements in surgical implants and the quality of life of patients whose lives depend on them.

Foreign bodies often trigger a process that begins with inflammation and ends with the foreign body being encapsulated with scar tissue. When this happens after an accident or injury, the process is usually vital to healing, but when the same occurs around, for example, electrodes implanted in the brain to alleviate tremor in Parkinson's disease, it may be problematic.

Despite decades of research, the process remains poorly understood as neither the materials from which these implants are made, nor their electrical properties, can explain what triggers inflammation.

Instead of looking for classical biological causes, a group of Cambridge physicists, engineers, chemists, clinical scientists and biologists decided to take a different tack and examine the impact of an implant's stiffness on the inflammatory process.

According to Dr Kristian Franze, one of the authors of the study: "Electrodes that are implanted in the brain, for example, should be chemically inert, and these foreign body reactions occur whether or not these electrodes are switched on, so it's not the electrical signalling.

"We thought that an obvious difference between electrodes and brain tissue is stiffness. Brain tissue is as soft as cream cheese, it is one of the softest tissues in the body, and electrodes are orders of magnitude stiffer."

To test their hypothesis that mechanical signals trigger inflammation, the team cultured brain cells on two different substrates. The substrates were chemically identical but one was as soft as brain tissue and the other was two orders of magnitude stiffer, akin to the stiffness of muscle tissue.

When they examined the cells, they found major differences in their shape. "The cells grown on the stiffer substrate were very flat, whereas those grown on the soft substrate looked much more like cells you find in the brain," he explained.

To confirm the findings they did genetic and other tests, which revealed that many of the inflammatory genes and proteins known to be involved in foreign body reactions had been upregulated on stiff surfaces.

The team then implanted a tiny foreign body into rats' brains. The implant was made of a single material but one side was as soft as brain tissue and the other as stiff as muscle. They found much greater foreign body reaction around the stiff part of the implant.

"This strongly indicates that stiffness of a material may trigger foreign body reactions. It does not mean there aren't other triggers, but stiffness definitely contributes and this is something new that hasn't been known before," he said.

The findings could have major implications for the design of implants used in the brain and other parts of the body.

"While it may eventually be possible to make implants out of new, much softer materials, our results suggest that in the short term, simply coating existing implants with materials that match the stiffness of the tissue they are being implanted into will help reduce foreign body reactions," said Dr Franze.
-end-


University of Cambridge

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.