Acoustic imaging reveals hidden features of megathrust fault off Costa Rica

February 12, 2018

Geophysicists have obtained detailed three-dimensional images of a dangerous megathrust fault west of Costa Rica where two plates of the Earth's crust collide. The images reveal features of the fault surface, including long grooves or corrugations, that may determine how the fault will slip in an earthquake.

The study, published February 12 in Nature Geoscience, focused on the Costa Rica subduction zone where the Cocos plate slowly dives beneath the overriding Caribbean plate. Variations in texture seen in different portions of the fault surface may explain why Costa Rica has complex, patchy earthquakes that do not seem to slip to shallow depths, unlike some other megathrust faults, said first author Joel Edwards, a Ph.D. candidate in Earth and planetary sciences at UC Santa Cruz.

"Our new imagery shows large variability in the conditions along the megathrust, which may be linked to a number of earthquake phenomena we observe in the region," Edwards said.

Megathrusts, the huge continuous faults found in subduction zones, are responsible for Earth's largest earthquakes. Megathrust earthquakes can generate destructive tsunamis and are a serious hazard facing communities located near subduction zones. Understanding the mechanisms at work along these faults is vital for disaster management around the globe.

Edwards worked with a team of geophysicists at UC Santa Cruz, the U.S. Geological Survey, the University of Texas-Austin, and McGill University to obtain 3-dimensional imagery of the fault interface using cutting-edge acoustic imaging technology. The long grooves, or corrugations, they observed along the interface are similar in size to those found along the base of fast-flowing glaciers and along some ocean ridges. The images also showed varying amounts of smoothness and corrugations on different portions of the fault.

"This study produced an unprecedented view of the megathrust. Such 3-D information is critical to our ability to better understand megathrust faults and associated hazards worldwide," said coauthor Jared Kluesner, a geophysicist at the USGS in Santa Cruz.

The acoustic dataset was collected in spring 2011 on the academic research vessel Marcus G. Langseth. The ship towed an array of underwater microphones and sound sources behind it as it made a series of overlapping loops over the area of the fault. The data were processed over the next 2 years and have since been used in a number of studies looking at different aspects of the subduction zone process. This particular study focused on the interface between the sliding plates, which serves as a record of slip and slip processes.

"The 3-D site selection was really good and the resulting acoustic dataset showed extraordinary detail," said Edwards, noting that coauthor Emily Brodsky, professor of Earth and planetary sciences, was the first to recognize the corrugations. Such features had been observed in exposed faults on land, but never before in a fault deep beneath the surface.

"I had an early rendition of the interface that vaguely showed long grooves, and during my qualifying exam, Brodsky saw them and asked, 'are those corrugations!?' I didn't know, but I knew they were real features. Slip-derived corrugations was a really neat hypothesis, and we dug into it after that," he said.

The area in this study had long been a target for drilling into the megathrust by the Costa Rica Seismic Project (CRISP). Coauthor Eli Silver, professor emeritus of Earth and planetary sciences at UC Santa Cruz, and others in the CRISP program decided to pursue a 3-D seismic study, which must precede any deep drilling, and the project was funded by the National Science Foundation in 2009. "At present, two drilling expeditions have been accomplished with shallower targets, and, though not yet scheduled, we are hopeful that the deep drilling will occur," Silver said.

Researchers hope to use similar imaging techniques on other subduction zones, such as the Cascadia margin along the northern U.S. west coast, where there is a long history of large megathrust earthquakes and related tsunamis. "Conducting this type of 3-D study along the Cascadia margin could provide us with key information along the megathrust, a plate boundary that poses a substantial hazard risk to the U.S. west coast," Kluesner said.
-end-
In addition to Edwards, Kluesner, Silver, and Brodksy, the coauthors of the paper include Danny Brothers at the USGS; Nathan Bangs at University of Texas, Austin; Jamie Kirkpatrick at McGill University; and Ruby Wood and Kristina Okamoto, both undergraduates at UC Santa Cruz.

University of California - Santa Cruz

Related Subduction Zones Articles from Brightsurf:

The connectivity of multicomponent fluids in subduction zones
A team of researchers has discovered more about the grain-scale fluid connectivity beneath the earth's surface, shedding new light on fluid circulation and seismic velocity anomalies in subduction zones.

New fault zone measurements could help us to understand subduction earthquake
University of Tsukuba researchers have conducted detailed structural analyses of a fault zone in central Japan to identify the specific conditions that lead to devastating earthquake.

A review of ridge subduction, magmatism and metallogenesis
Ridge subduction events are very common and important geodynamic processes in modern oceanic plate tectonics (Figure 1), and play an important role in the generation of arc magmatism, material recycling, growth and evolution of continental crust, deformation and modification of overlying plates and metallogenesis.

Scientists review the metallogenesis and challenges of porphyry copper systems above subduction zone
Porphyry copper ± molybdenum ± gold deposits (PCDs) are the most economically important magmatic-hydrothermal metallogenic system above subduction zones, which have supplied nearly 3/4 of the world's copper, 1/2 of the molybdenum and 1/5 of the gold, as well as large amounts of silver, zinc, tin and tungsten, with however their metallogenesis remaining controversial.

Does accelerated subduction precede great earthquakes?
A strange reversal of ground motion preceded two of the largest earthquakes in history.

Is there a technological solution to aquatic dead zones?
Could pumping oxygen-rich surface water into the depths of lakes, estuaries, and coastal ocean waters help ameliorate dangerous dead zones?

Warming climate will impact dead zones in Chesapeake Bay
In recent years, scientists have projected increasingly large summer dead zones in the Chesapeake Bay, areas where there is little or no oxygen for living things like crabs and fish to thrive, even as long-term efforts to reduce nutrient pollution continue.

Could dark carbon be hiding the true scale of ocean 'dead zones'?
The impact of climate change on the world's oceans is becoming increasingly known but new research suggests current computer models could be omitting a crucial piece of evidence when it comes to assessing the scale of ocean dead zones.

SRL publishes focus section on Subduction Zone processes in the Americas
Researchers from around the globe share what they've learned from an unprecedented amount of data collected in the Latin American Subduction Zone over the past two decades.

Researchers from IKBFU find out how to strengthen coastal zones of Baltic Sea
Reconstruction and strengthening of coastal zones are the key issues of many industries that are oriented in the seaside tourism.

Read More: Subduction Zones News and Subduction Zones Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.