Nav: Home

Investigating cell stress for better health -- and better beer

February 12, 2019

Human beings are not the only ones who suffer from stress - even microorganisms can be affected. Now, researchers from Chalmers University of Technology, Sweden, have devised a new method to study how single biological cells react to stressful situations. Understanding these responses could help develop more effective drugs for serious diseases. As well as that, the research could even help to brew better beer.

All living organisms can experience stress during challenging situations. Cells and microorganisms have complicated systems to govern how they adapt to new conditions. They can alter their own structure by incorporating or releasing many different substances into the surroundings. Due to the complexity of these molecular processes, understanding these systems is a difficult task.

Chalmers researchers Daniel Midtvedt, Erik Olsén, Fredrik Höök and Gavin Jeffries have now made an important breakthrough, by looking at how individual yeast cells react to changes in the local environment - in this case an increased osmolarity, or concentration, of salt. They both identified and monitored the change of compounds within the yeast cells, one of which was a sugar, glycerol. Furthermore, they were able to measure the exact rate and amount of glycerol produced by different cells under various stress conditions. Their results have now been published in the renowned scientific journal Nature Communications.

"Yeast and bacteria have very similar systems when it comes to response to stress, meaning the results are very interesting from a medical point of view. This could help us understand how to make life harder for undesirable bacteria which invade our body - a means to knock out their defence mechanisms," says Daniel Midtvedt, researcher in biological physics at Chalmers, and lead writer of the scientific paper.

He has been researching the subject since 2015, and, together with his colleagues, has developed a variant of holographic microscopy to study the cells in three dimensions. The method is built upon an interference imaging approach, splitting a laser beam into two light paths. One passes through a cell sample, and one does not. The two beams are then recombined at a slight offset angle. This makes it possible to read changes in the cell's properties through the variations in beam phase offsets.

With this method of investigating a cell, researchers can see what different microorganisms produce under stress - without needing to use different types of traditional 'label-based' strategies. Their non-invasive strategy allows for multiple compounds to be detected simultaneously, without damaging the cell.

The researchers now plan to use the new method in a large collaboration project, to look at the uptake of targeted biomedicines.

"Hopefully, we can contribute to improved understanding of how drugs are received and processed by human cells. It is important to be able to develop new type of drugs, with the hope that we can treat those illnesses which today are untreatable," says Chalmers professor Fredrik Höök, who further leads the research centre Formulaex, where AstraZeneca is the leading industry partner.

As well as the benefit to medical researchers, improved knowledge of the impact of stress on yeast cells could be valuable for the food and drink industry - not least, when it comes to brewing better beer.

"Yeast is essential for both food and drink preparation, for example in baking bread and brewing beer. This knowledge of yeast cells' physical characteristics could be invaluable. We could optimise the products exactly as we want them," says Daniel Midtvedt.
-end-
About the scientific paper:

The article, "Label-free spatio-temporal monitoring of cytosolic mass, osmolarity, and volume in living cells" is published in Nature Communications. It was written by Chalmers researchers Daniel Midtvedt, Erik Olsén and Fredrik Höök from Chalmers' Department of Physics, and Gavin Jeffries (Fluicell AB), previously at the Department of Chemistry and Chemical Engineering.

For more information, contact:

Daniel Midtvedt, Post Doc, Biological Physics, Department of Physics, Chalmers University of Technology
midtvedt@chalmers.se
+44 73 736 85 05

Fredrik Höök, Professor, Biological Physics, Department of Physics, Chalmers University of Technology
fredrik.hook@chalmers.se
+46 31 772 61 30

Related material:

Read the previous press release "75 million SEK for developing target seeking biological pharmaceuticals"

Read more on Formulaex

Chalmers University of Technology

Related Stress Articles:

Captive meerkats at risk of stress
Small groups of meerkats -- such as those commonly seen in zoos and safari parks -- are at greater risk of chronic stress, new research suggests.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
Some veggies each day keeps the stress blues away
Eating three to four servings of vegetables daily is associated with a lower incidence of psychological stress, new research by University of Sydney scholars reveals.
Prebiotics may help to cope with stress
Probiotics are well known to benefit digestive health, but prebiotics are less well understood.
Building stress-resistant memories
Though it's widely assumed that stress zaps a person's ability to recall memory, it doesn't have that effect when memory is tested immediately after a taxing event, and when subjects have engaged in a highly effective learning technique, a new study reports.
Stress during pregnancy
The environment the unborn child is exposed to inside the womb can have a major effect on her or his development and future health.
New insights into how the brain adapts to stress
New research led by the University of Bristol has found that genes in the brain that play a crucial role in behavioural adaptation to stressful challenges are controlled by epigenetic mechanisms.
Uncertainty can cause more stress than inevitable pain
Knowing that there is a small chance of getting a painful electric shock can lead to significantly more stress than knowing that you will definitely be shocked.
Stress could help activate brown fat
Mild stress stimulates the activity and heat production by brown fat associated with raised cortisol, according to a study published today in Experimental Physiology.
Experiencing major stress makes some older adults better able to handle daily stress
Dealing with a major stressful event appears to make some older adults better able to cope with the ups and downs of day-to-day stress.

Related Stress Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".