Nav: Home

NTU, MIT and Russian scientists develop AI to predict and engineer material properties

February 12, 2019

Scientists from Nanyang Technological University, Singapore (NTU Singapore), in collaboration with researchers from the Massachusetts Institute of Technology (MIT) in the United States and the Skolkovo Institute of Science and Technology in Russia, have developed a machine learning approach that can predict changes to the properties of materials from straining the material.

This work could lead to the possibility of engineering new materials with tailored properties for potential use in communications, information processing, and energy fields.

In a paper published today (12 Feb) in the Proceedings of the National Academy of Sciences, the authors demonstrated their use of Artificial Intelligence to identify the most energy-efficient strain pathways that could transform diamond into more effective semiconductors.

When a semiconductor material is bent or strained, the atoms in its structure are perturbed, thus changing its properties such as how it conducts electricity, heat or the transmission of light. This process is known as 'strain engineering'.

Conventional methods of studying and mapping the effects of strain engineering on a material rely on trial and error lab experiments and computer modelling on a limited scale.

As a prelude to this work, last year the NTU Singapore and MIT authors reported in Science , that diamond nanoneedles could be bent and stretched as much as 9 per cent, which was surprising given that diamond is the hardest natural material known.

And in earlier research with industrial applications, "strain engineering" was used on silicon processor chips, where a one per cent strain allowed electrons to move faster, resulting in up to 50 per cent higher processing speeds.

Professor Subra Suresh, President of NTU Singapore and a senior author of the study said their new method used machine learning to predict the effects of strain on the properties of a material. This makes it possible to calculate the almost infinite possible combinations of material strain in a six-dimensional strain space.

"Now we have this reasonably accurate method that drastically reduces the complexity of the calculations needed," said Prof Suresh, who is a former Dean of Engineering at MIT.

"Our research is an illustration of how recent advances in seemingly distant fields such as material physics, artificial intelligence, computing, and machine learning can be brought together to advance scientific knowledge that has strong implications for industry application."

Customising material properties through strain

While conventional ways of altering semiconductors such as chemical doping - adding a new element to a material - could affect and change its properties permanently, the nonlinear elastic strain considered here is reversible, which means it can be applied and removed depending on need, explained Professor Ju Li, Battelle Energy Alliance Professor of Nuclear Science and Engineering and Materials Science and Engineering at MIT.

However, identifying and applying the full potential of strain-engineered materials is very difficult, due to the daunting range of possibilities. Strain can be applied in any of six different and independent ways (in three different dimensions, each one of which can produce strain in-and-out or sideways), and with nearly infinite gradations of degree, so the total number of possibilities are impractical to explore simply by trial and error.

"It quickly grows to 100 million calculations if we want to map out the entire elastic strain space," says Prof Li, who is also a Professor of Materials Science and Engineering.

In this study, the team examined the effects of strain on the bandgap, a key electronic property of semiconductors, in both silicon and diamond.

Using their neural network algorithm, they predicted with high accuracy how different amounts and orientations of strain would affect the bandgap.

Being able to tune the bandgap could improve the efficiency of semiconductor materials such as a silicon solar cell, increasing the energy harnessed from light while making it a thousand times thinner, thus reducing the cost needed for materials, transportation and infrastructure.

Diamond has shown great potential as a semiconductor material with superior intrinsic properties, which are ideal for high-frequency devices like radios in satellite communications, and power electronics used for mobile networks and electrical power grids.

The work was undertaken by a multidisciplinary research team comprising Prof Subra Suresh from NTU; MIT Prof Ju Li, MIT principal research scientist and NTU Visiting Professor Dr Ming Dao, and graduate student Zhe Shi from MIT; as well as Evgeni Tsymbalov and Alexander Shapeev from the Skolkovo Institute of Science and Technology.

In addition to the bandgap, their method can also be used to study and predict other properties of materials, such as electronic, photonic and magnetic behaviours.

The work points to potential new opportunities to create materials for electronic, optoelectronic, and photonic devices that could find uses for communications, information processing, and energy applications.
-end-
Notes to the Editor:

Zhe Shi, et al., "Deep elastic strain engineering of bandgap through machine learning," PNAS, 11 Feb 2019 https://www.pnas.org/lookup/doi/10.1073/pnas.1818555116

Media contact:

Lester Kok
Assistant Director
Corporate Communications Office
Nanyang Technological University
Email: lesterkok@ntu.edu.sg

About Nanyang Technological University, Singapore

A research-intensive public university, Nanyang Technological University, Singapore (NTU Singapore) has 33,000 undergraduate and postgraduate students in the Engineering, Business, Science, Humanities, Arts, & Social Sciences, and Graduate colleges. It also has a medical school, the Lee Kong Chian School of Medicine, set up jointly with Imperial College London.

NTU is also home to world-class autonomous institutes - the National Institute of Education, S Rajaratnam School of International Studies, Earth Observatory of Singapore, and Singapore Centre for Environmental Life Sciences Engineering - and various leading research centres such as the Nanyang Environment & Water Research Institute (NEWRI) and Energy Research Institute @ NTU (ERI@N).

Ranked 12th in the world, NTU has also been placed the world's top young university for the past five years. The University's main campus is frequently listed among the Top 15 most beautiful university campuses in the world and it has 57 Green Mark-certified (equivalent to LEED-certified) building projects comprising more than 230 buildings, of which 95% are certified Green Mark Platinum. Apart from its main campus, NTU also has a campus in Singapore's healthcare district.

Nanyang Technological University

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab