Nav: Home

Laser physics: Transformation through light

February 12, 2019

Laser physicists have taken snapshots of how C60 carbon molecules react to extremely short pulses of intense infrared light.

C60 is an extremely well-studied carbon molecule, which consists of 60 carbon atoms and is structured like a soccer ball. The macromolecule is also known as buckminsterfullerene (or buckyball), a name given as a tribute to the architect Richard Buckminster Fuller, who designed buildings with similar shapes.

Laser physicists have now irradiated buckyballs with infrared femtosecond laser pulses (one femtosecond is a millionth of a billionth of a second). Under the influence of the intense light, the form of the macromolecule was changed from round to elongated. The physicists were able to observe this structural transformation by using the following trick: At its maximum strength the infrared pulse triggered the release of an electron from the molecule. Owing to the oscillations in the electromagnetic field of the light, the electron was first accelerated away from and then drawn back toward the molecule, all within the timespan of a few femtoseconds. Finally, the electron scattered off the molecule and left it completely. Images of these diffracted electrons allowed the deformed structure of the molecule to be reconstructed.

Fullerenes, the discovery of which was honored with the Nobel Prize in Chemistry in 1996, are stable, biocompatible, and exhibit remarkable physical, chemical and electronic properties. "A deeper understanding of the interaction of fullerenes with ultrashort, intense light may result in new applications in ultrafast, light-controlled electronics, which could operate at speeds many orders of magnitude faster than conventional electronics", explains Ludwig-Maximilians-Universitaet (LMU) in Munich Professor Matthias Kling.
-end-


Ludwig-Maximilians-Universität München

Related Chemistry Articles:

Coordination chemistry and Alzheimer's disease
It has become evident recently that the interactions between copper and amyloid-β neurotoxically impact the brain of patients with Alzheimer's disease.
Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.
Principles for a green chemistry future
A team led by researchers from the Yale School of Forestry & Environmental Studies recently authored a paper featured in Science that outlines how green chemistry is essential for a sustainable future.
Sugar changes the chemistry of your brain
The idea of food addiction is a very controversial topic among scientists.
Reflecting on the year in chemistry
A lot can happen in a year, especially when it comes to science.
Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.
Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.
Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.
The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?
Top 10 chemistry start-ups
Starting a new chemistry-based company is one part discovery, one part risk.
More Chemistry News and Chemistry Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.