Hyperbolic metamaterials enable nanoscale 'fingerprinting'

February 12, 2019

WASHINGTON, D.C., February 12, 2019 -- Hyperbolic metamaterials are artificially made structures that can be formed by depositing alternating thin layers of a conductor such as silver or graphene onto a substrate. One of their special abilities is supporting the propagation of a very narrow light beam, which can be generated by placing a nanoparticle on its top surface and illuminating it with a laser beam.

It's extremely challenging to realize in practice subwavelength images of unknown and arbitrary objects, but as University of Michigan and Purdue University researchers report in APL Photonics, from AIP Publishing, it isn't always necessary to obtain a full image when something about that object is already known.

"One familiar example from everyday life is the fingerprint," said Theodore B. Norris, at the University of Michigan. "A fingerprint recognition system doesn't need to obtain a complete high-resolution image of the fingerprint -- it only needs to recognize it." So Evgenii E. Narimanov, one of the co-authors, began to think about whether nanometer-scale objects could be identified without the need to obtain complete images.

The propagation direction of the beam inside a hyperbolic metamaterial depends on the wavelength of the light. By sweeping the wavelength of the incident light, the narrow beam will scan across the bottom hyperbolic metamaterial and its air interface. If nano-objects are placed near the bottom interface, they scatter out light; this scattering is strongest when the narrow beam is directed toward them.

"We can measure the scattered light power using a photodetector and plot the scattered light power versus the wavelength of the incident light," said Zhengyu Huang, a graduate student at the University of Michigan. "Such a plot encodes spatial information about the nano-objects through the wavelength of the scattering peak in the plot and encodes their material information through the height of the peak."

The plot serves as a "fingerprint," which allows the researchers to determine the distance of a bottom nano-object to be sensed relative to the top nanoparticle, as well as the separation between two nano-objects, and their material composition.

Gaining access to the nanoscale world via optics has been one of the most vigorously pursued frontiers in optics during the past decade. "The traditional microscope is limited in resolution by the wavelength of light," said Huang. "And, using a conventional microscope, the smallest feature one can resolve is about 250 nanometers for visible light -- also known as the Abbe limit."

Moving beyond this limit and resolving smaller features will require some advanced technologies. "Most are imaging methods, with images containing the objects of interest as the measurement," explained Huang. "But instead of following the imaging approach, our work demonstrates a novel route to obtain spatial and material information about the microscopic world through the 'fingerprinting' process." Significantly, it can resolve two objects that are just 20 nanometers apart from each other -- well beyond the Abbe limit.

"Our work could potentially find applications in biomolecular measurement," Huang said. "People are interested in determining the distance between two biomolecules with nanoscale separation, for example, which can be used to study the interaction between proteins. And our method may also be used for industrial product monitoring to determine whether nanostructured parts were manufactured to specification."
-end-
The article, "Nanoscale fingerprinting with hyperbolic metamaterials," is authored by Zhengyu Huang, Theodore B. Norris and Evgenii E. Narimanov. It will appear in APL Photonics on Feb. 12, 2019 (DOI: 10.1063/1.5079736). After that date, the article can be accessed at https://aip.scitation.org/doi/10.1063/1.5079736.

ABOUT THE JOURNAL

APL Photonics is the dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science. See http://scitation.aip.org/content/aip/journal/app.

American Institute of Physics

Related Fingerprint Articles from Brightsurf:

Shared protein fingerprint could simplify treatment of common inherited heart disease
University of Wisconsin-Madison scientists discovered that many different genetic mutations result in surprisingly similar changes to heart muscle proteins in patients with the most severe manifestations of hypertrophic cardiomyopathy.

Each human gut has a viral 'fingerprint'
Each person's gut virus composition is as unique as a fingerprint, according to the first study to assemble a comprehensive database of viral populations in the human digestive system.

Atomic fingerprint identifies emission sources of uranium
Depending on whether uranium is released by the civil nuclear industry or as fallout from nuclear weapon tests, the ratio of the two anthropogenic, i.e. man-made, uranium isotopes 233U and 236U varies.

Prostate cancer 'fingerprint' detected in blood sample
Scientists at UCL have invented a new test to identify the earliest genetic changes of prostate cancer in blood: a process which could allow doctors to see if cancers have spread, monitor tumor behavior and enable better treatment selection.

Experimental fingerprint test can distinguish between those who have taken or handled cocaine
An experimental fingerprint detection approach can identify traces of cocaine on human skin, even after someone has washed their hands -- and the test is also smart enough to tell whether an individual has actually consumed the class A drug, or simply handled it.

OU study finds the fingerprint of paddy rice in atmospheric methane concentration dynamics
A University of Oklahoma-led study shows that paddy rice (both area and plant growth) is significantly related to the spatial-temporal dynamics of atmospheric methane concentration in monsoon Asia, where 87% of paddy rice fields are situated in the world.

Fingerprint test can distinguish between those who have taken or handled heroin
A state-of-the-art fingerprint detection technology can identify traces of heroin on human skin, even after someone has washed their hands -- and it is also smart enough to tell whether an individual has used the drug or shaken hands with someone who has handled it.

A precise chemical fingerprint of the Amazon
This novel drone-based chemical monitoring system tracks the health of the Amazon in the face of global climate change and human-caused deforestation and burning.

Canadian astronomers determine Earth's fingerprint
Two McGill University astronomers have assembled a 'fingerprint' for Earth, which could be used to identify a planet beyond our Solar System capable of supporting life.

Fingerprint of sleep habits as warning sign for heart disease
Chronic short sleep is associated with increased risk of clogged arteries, heart disease, and thus increased morbidity and mortality.

Read More: Fingerprint News and Fingerprint Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.