Nav: Home

Bird flu shuffle probes viral compatibility

February 12, 2019

When influenza viruses that infect birds and humans meet in the same cell, they can shuffle their genomes and produce new strains that might have pandemic potential. Think of this process, called reassortment, as viruses having sex.

In the last several years, public health officials have been monitoring two varieties of bird flu viruses with alarming properties: H7N9 and H5N8. Scientists at Emory University School of Medicine have been probing the factors that limit reassortment between these strains and a well-known strain (H3N2) that has been dominating the last few flu seasons in the United States.

The good news is that "packaging signals" on the bird flu viral RNA genomes were often incompatible with the H3N2 viruses. That means it could be difficult for segments of the genome from the bird viruses to get wrapped up with the human viruses. Mix + match still occurred at a low level, particularly with H5N8.

The results are scheduled for publication the week of Feb. 11 in Proceedings of the National Academy of Sciences.

"What we see is that sequence differences between the human and avian viruses limit the potential for reassortment," says Anice Lowen, PhD, associate professor of microbiology and immunology at Emory University School of Medicine. "But the low level of compatibility could be more significant if reassortant viruses have an advantage, for example, because of pre-existing immunity. It highlights the continued need for surveillance."

Graduate student Maria White, who conducted most of the experiments, emphasizes that she was not handling intact infectious avian flu viruses, which could be dangerous. Rather, she took just a bit of genetic information from them: the packaging signals for the hemagglutinin-encoding segments.

Hemagglutinin is one of the main external proteins enabling the virus to bind and infect our cells. And packaging signals are parts of the viral RNA genome that tell an infected cell to wrap up that piece of RNA into a new virus. They're sort of like our chromosomes, but much smaller.

White inserted only the packaging signals into H3N2 viruses, which are studied in the laboratory under biosafety level 2 conditions. Careful and rigorous, but no space suits needed. She found that the hybrid viruses still were able to replicate well.

However, when she co-infected the hybrid viruses with standard H3N2, the hybrids were not taken up into newly produced viral particles as well as H3N2. A similar thing happened when White co-infected guinea pigs, and had those guinea pigs in the same cage with a healthy animal. Mostly regular H3N2 virus was transmitted, but she did detect transmission of viruses with H5 packaging signals.

"These findings suggest that H5 packaging signals are sufficiently compatible with H3N2 viruses to allow a low level of transmission," the authors write.

White says the packaging incompatibility could come from interactions between viral RNAs as well as between bird flu RNA and human flu protein. She adds that other factors could come into play in determining compatibility, such as differences in which tissues the viruses like to infect.

Regular reports of H5N8 outbreaks come from poultry farmers around the world, but so far H5N8 has only been a problem in birds. The concern is that humans frequently come into contact with the birds, giving an opportunity for cross-species transmission and reassortment with seasonal flu viruses, Lowen says. Additional risk comes from the possibility of point mutations that could further alter the properties of reassorted viruses.
-end-
White is in the Immunology and Molecular Pathogenesis graduate program. Research specialist Hui Tao and assistant professor John Steel, PhD contributed to the paper.

This work was funded in part by the Emory-UGA Center of Excellence in Influenza Research and Surveillance (CEIRS), Health and Human Services Department contract HHSN272201400004C and by National Institute of Allergy and Infectious Diseases (R01AI125268).

Emory Health Sciences

Related Rna Articles:

New kind of CRISPR technology to target RNA, including RNA viruses like coronavirus
Researchers in the lab of Neville Sanjana, PhD, at the New York Genome Center and New York University have developed a new kind of CRISPR screen technology to target RNA.
Discovery of entirely new class of RNA caps in bacteria
The group of Dr. Hana Cahová of the Institute of Organic Chemistry and Biochemistry of the CAS, in collaboration with scientists from the Institute of Microbiology of the CAS, has discovered an entirely new class of dinucleoside polyphosphate 5'RNA caps in bacteria and described the function of alarmones and their mechanism of function.
New RNA mapping technique shows how RNA interacts with chromatin in the genome
A group led by scientists from the RIKEN Center for Integrative Medical Sciences (IMS) in Japan have developed a new method, RADICL-seq, which allows scientists to better understand how RNA interacts with the genome through chromatin--the structure in which the genome is organized.
Characterising RNA alterations in cancer
The largest and most comprehensive catalogue of cancer-specific RNA alterations reveals new insights into the cancer genome.
A new approach to reveal the multiple structures of RNA
The key of the extraordinary functionality of ribonucleic acid, better known as RNA, is a highly flexible and dynamic structure.
RNA modification -- Methylation and mopping up
Ludwig-Maximilian-Universitaet (LMU) in Munich researchers have discovered a novel type of chemical modification in bacterial RNAs.
New RNA molecules may play a role in aging
Using a new sequencing method, this class of previously invisible RNA molecules were found to be abundantly expressed.
AI reveals nature of RNA-protein interactions
A deep learning tool could help in structure-based drug discovery.
Uncovering the principles behind RNA folding
Using high-throughput next-generation sequencing technology, Professor Julius Lucks found similarities in the folding tendencies among a family of RNA molecules called riboswitches, which play a pivotal role in gene expression.
A new, unified pathway for prebiotic RNA synthesis
Adding to support for the RNA world hypothesis, Sidney Becker and colleagues have presented what's not been shown before -- a single chemical pathway that could generate both the purine and pyrimidine nucleosides, the key building blocks of RNA.
More RNA News and RNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.