Nav: Home

Laser-induced graphene gets tough, with help

February 12, 2019

HOUSTON - (Feb. 12, 2019) - Laser-induced graphene (LIG), a flaky foam of the atom-thick carbon, has many interesting properties on its own but gains new powers as part of a composite.

The labs of Rice University chemist James Tour and Christopher Arnusch, a professor at Ben-Gurion University of the Negev in Israel, introduced a batch of LIG composites in the American Chemical Society journal ACS Nano that put the material's capabilities into more robust packages.

By infusing LIG with plastic, rubber, cement, wax or other materials, the labs made composites with a wide range of possible applications. These new composites could be used in wearable electronics, in heat therapy, in water treatment, in anti-icing and deicing work, in creating antimicrobial surfaces and even in making resistive random-access memory devices.

The Tour lab first made LIG in 2014 when it used a commercial laser to burn the surface of a thin sheet of common plastic, polyimide. The laser's heat turned a sliver of the material into flakes of interconnected graphene. The one-step process made much more of the material, and at far less expense, than through traditional chemical vapor deposition.

Since then, the Rice lab and others have expanded their investigation of LIG, even dropping the plastic to make it with wood and food. Last year, the Rice researchers created graphene foam for sculpting 3D objects.

"LIG is a great material, but it's not mechanically robust," said Tour, who co-authored an overview of laser-induced graphene developments in the Accounts of Chemical Research journal last year. "You can bend it and flex it, but you can't rub your hand across it. It'll shear off. If you do what's called a Scotch tape test on it, lots of it gets removed. But when you put it into a composite structure, it really toughens up."

To make the composites, the researchers poured or hot-pressed a thin layer of the second material over LIG attached to polyimide. When the liquid hardened, they pulled the polyimide away from the back for reuse, leaving the embedded, connected graphene flakes behind.

Soft composites can be used for active electronics in flexible clothing, Tour said, while harder composites make excellent superhydrophobic (water-avoiding) materials. When a voltage is applied, the 20-micron-thick layer of LIG kills bacteria on the surface, making toughened versions of the material suitable for antibacterial applications.

Composites made with liquid additives are best at preserving LIG flakes' connectivity. In the lab, they heated quickly and reliably when voltage was applied. That should give the material potential use as a deicing or anti-icing coating, as a flexible heating pad for treating injuries or in garments that heat up on demand.

"You just pour it in, and now you transfer all the beautiful aspects of LIG into a material that's highly robust," Tour said.
-end-
Editor's note: Links to video and high-resolution images for download appear at the end of this release.

Jeff Falk 713-348-6775 jfalk@rice.edu

Mike Williams 713-348-6728 mikewilliams@rice.edu

Rice graduate students Duy Xuan Luong and Kaichun Yang and former postdoctoral researcher Jongwon Yoon, now a senior researcher at the Korea Basic Science Institute, are co-lead authors of the paper. Co-authors are former Rice postdoctoral researcher Swatantra Singh, now at the Indian Institute of Technology Bombay, and Rice graduate student Tuo Wang. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering at Rice.

The Air Force Office of Scientific Research and the United States-Israel Binational Science Foundation supported the research.

Read the abstract at https://pubs.acs.org/doi/10.1021/acsnano.8b09626.

This news release can be found online at https://news.rice.edu/2019/02/12/laser-induced-graphene-gets-tough-with-help-2/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Laser-induced graphene: https://pubs.acs.org/doi/abs/10.1021/acs.accounts.8b00084

Tour Group: http://tournas.rice.edu/website/

Arnusch Laboratory: https://arnuschlab.weebly.com

Rice Department of Chemistry: https://chemistry.rice.edu

Wiess School of Natural Sciences: https://naturalsciences.rice.edu

Video:

https://youtu.be/WWUOoOqOOUc

Composites of laser-induced graphene with a variety of other materials are tested for their anti-icing capabilities. Electrifying the thin, hydrophobic material prevents ice from forming on the surface. (Credit: Tour Group/Rice University)

https://youtu.be/7feX94m4F3I

A hydrophilic composite of laser-induced graphene and other materials readily soaks up water. (Credit: Tour Group/Rice University)

Images for download:

https://news-network.rice.edu/news/files/2019/02/0218_LIG-1-web-1i3zsjd.jpeg

Rice University scientists have combined laser-induced graphene with a variety of materials to make robust composites for a variety of applications. (Credit: Tour Group/Rice University)

https://news-network.rice.edu/news/files/2019/02/0218_LIG-2-web-1o9op5i.jpg

Laser-induced graphene, produced via a method developed at Rice University, can be combined with other materials for composites. The resulting materials show promise for electronic, anti-icing and heating applications. (Credit: Tour Group/Rice University)

https://news-network.rice.edu/news/files/2019/02/0218_LIG-3-WEB-1gyfgjq.jpg

A scanning electron microscope image shows a composite of laser-induced graphene and polystyrene. (Credit: Tour Group/Rice University)

https://news-network.rice.edu/news/files/2019/02/0218_LIG-4-WEB-rbrhhb.jpg

A scanning electron microscope image shows a composite of laser-induced graphene and latex paint. (Credit: Tour Group/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Rice University

Related Plastic Articles:

A radar for plastic: High-resolution map of 1 kilometre grids to track plastic emissions in seas
Plastic waste often ends up in river bodies and oceans, posing a serious threat to the marine ecosystem.
Sustainable structural material for plastic substitute
A team lead by Prof. Shu-Hong Yu from the University of Science and Technology of China (USTC) report a high-performance sustainable structural material called cellulose nanofiber plate (CNFP) which is constructed from bio-based CNF and ready to replace the plastic in many fields.
Plastic pollution reaching the Antarctic
Food wrapping, fishing gear and plastic waste continue to reach the Antarctic.
'Triangle 2' plastic containers may see environmental makeover
Cornell chemists can demonstrate how to make high-density polyethylene with better control over polymer chain lengths, which allows for improvement over physical properties such as processability and strength, according to research published Dec.
Plastic from wood
The biopolymer lignin is a by-product of papermaking and a promising raw material for manufacturing sustainable plastic materials.
An 18-carat gold nugget made of plastic
ETH researchers have created an incredibly lightweight 18-carat gold, using a matrix of plastic in place of metallic alloy elements.
Turning plastic trash into treasure
Researchers have developed a new catalyst that can cleave plastic's strong carbon-carbon, converting it into higher value products.
Rethinking the science of plastic recycling
A multi-institutional collaboration reports a catalytic method for selectively converting discarded plastics into higher quality products.
All plastic waste could become new, high-quality plastic through advanced steam cracking
A research group at Chalmers University of Technology, Sweden, has developed an efficient process for breaking down any plastic waste to a molecular level.
Green turtles eat plastic that looks like their food
Green turtles are more likely to swallow plastic that resembles their natural diet of sea grass, new research suggests.
More Plastic News and Plastic Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.