Small marsupials in Australia may struggle to adjust to a warming climate

February 12, 2020

Numerous questions remain unanswered as to how the planet's species will respond to climate change. A new paper in the journal Frontiers in Physiology suggests that at least one species of marsupial "mice" may struggle to adapt to a warming world.

The study found that changes in ambient temperatures experienced during the development and growth of yellow-footed antechinus (Antechinus flavipes) can influence their behavioral and physiological traits.

"This has important implications in terms of how this species will respond to changes in the climate," said lead author Dr. Clare Stawski, associate professor at Norwegian University of Science and Technology. "Individuals raised in warm conditions appear to have less phenotypic flexibility, suggesting that they may not be able to respond effectively to prolonged increases in temperature."

Phenotypic flexibility refers to the ability of an organism to adjust to a new type of environmental stress. In this case, Stawski and colleague Dr. Fritz Geiser, a professor at the University of New England in Australia, wanted to see how antechinus might respond to temperature swings for varying time periods.

The experiment involved 19 juvenile antechinus, which were split into two groups and subjected to different temperature regimes ranging from 16.7 degrees Celsius to 24.7 degrees Celsius. Infrared sensors attached to individual cage lids measured their activity and custom-made data loggers recorded their behavior.

Once the miniature marsupials reached adult age, the scientists measured metabolic rates, body mass and other physiological parameters across another set of experiments. These included putting them into temperature-controlled chambers where they experienced further variations in temperatures.

Overall, the yellow-footed antechinus were more active with lower metabolic rates at warmer temperatures. This is typical for many mammals shifting from winter to summer. However, the results from the experiments also suggested that while individuals can withstand short periods of warmer temperatures, they don't have a particularly effective strategy to endure prolonged heat waves.

That's not good news, considering that Australia's national science agency, the Commonwealth Scientific and Industrial Research Organisation (CSIRO), projects "very high confidence" that hot days will become more frequent and hotter in the future.

Australia is home to at least ten species of insect-munching antechinus. While they superficially resemble rodents, these marsupial carnivores behave much differently. For example, their love lives: The animals engage in a short but frenzied period of mating, after which the males die from stress-induced immune system breakdown. Another difference is that antechinus can enter a state of decreased physiological activity, or torpor, in response to colder temperatures or other environmental factors.

Stawski noted that the results of the current study can likely be used to make broad assumptions about all antechinus species, as they share a similar ecology in terms of reproduction and habitats.

"Further, I do think our results could also be applicable to other small marsupials that employ daily torpor," she said.

In previous studies, Stawski, Geiser and their colleagues have investigated how small marsupials might respond to wildfires. They found that torpor can be a very effective means for surviving a wildfire, both during a fire if the animals are in a safe refuge and after the fire when resources are limited.

However, the recent fires that have enveloped vast regions of Australia is another story entirely. Some estimates claim the fires have killed more than one billion animals.

"Torpor during a fire is only beneficial if the refuge protects the torpid animal," Stawski noted. "It is likely that many torpid animals perished during the current wildfires in Australia due to their severity. Further, as these wildfires are occurring during summer and heatwaves, many animals would be unable to effectively employ torpor due to the high temperatures."
Notes to Editors

Please link to the original research article in your reporting:

Corresponding author: Dr. Clare Stawski


Corresponding Author's Institution: Norwegian University of Science and Technology

Frontiers is an award-winning Open Science platform and leading Open Access scholarly publisher. Our mission is to make research results openly available to the world, thereby accelerating scientific and technological innovation, societal progress and economic growth. We empower scientists with innovative Open Science solutions that radically improve how science is published, evaluated and disseminated to researchers, innovators and the public. Access to research results and data is open, free and customized through Internet Technology, thereby enabling rapid solutions to the critical challenges we face as humanity. For more information, visit and follow @Frontiersin on Twitter.


Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to