Nav: Home

New air-pressure sensor could improve everyday devices

February 12, 2020

BINGHAMTON, NY -- A team of mechanical engineers at Binghamton University, State University of New York investigating a revolutionary kind of micro-switch has found another application for its ongoing research.

After finding a new type of MEMS (microelectromechanical system) that allows better control, the researchers have used that knowledge to build an air-pressure sensor that could improve many everyday devices.

"This is the same mechanism as devices we've designed in the past, but it's a different application," said principal investigator Shahrzad "Sherry" Towfighian, an associate professor of mechanical engineering at Binghamton's Thomas J. Watson School of Engineering and Applied Science.

"The heart of the sensor still consists of four electrodes, and conventional sensors have two electrodes," said Towfighian. "That allows us to better tune the properties of the system."

The study was funded through a $480,958 grant from the National Science Foundation. Binghamton University PhD student Mark Pallay conducted much of the research under the supervision of Towfighian and her co-principal investigator, Distinguished Professor Ronald N. Miles of the Mechanical Engineering Department. Pallay has since graduated and started working at Seagate Technology as a research and development engineer.

One advantage of this MEMS -- a microscopic device with moving parts that is produced in the same way as electronics -- is its self-contained design. There's no need for a computer to analyze the readings, making the response time faster and more reliable.

"It not only senses the pressure but also triggers a switch," Towfighian said. "Usually a sensor needs to sense the pressure, process it through software to decide if the right conditions have been met and then trigger the switch. This one is a compact pressure sensor and switch, so by sending the voltage to one of the electrodes, you can make it work at different pressures."

As with all the MEMS switches that the Binghamton University team has designed so far, this new offering can have a multitude of uses, such as measuring barometric pressure, monitoring oxygen for premature babies at hospitals or detecting tire pressure in vehicles.

"Sometimes it's critical to detect the pressure threshold," Towfighian said. "For example, you're in an airplane and you want the air masks to come down if the air pressure drops below a certain amount. It's very easy to set the bias voltage to trigger automatically."

She added that the way the switch is built with four electrodes also means a longer lifespan: "Often there is a problem with the current devices that they have a limited lifespan because of having two electrodes, but having two other electrodes enables us to make it more durable and increase the life of the device."

The paper, "A Tunable Electrostatic MEMS Pressure Switch," was published in IEEE Transactions on Industrial Electronics.
-end-


Binghamton University

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.