Medication-based starvation of cancer cells

February 12, 2021

The drug thalidomide was sold as a sedative under the trade name Contergan in the 1950s and 1960s. At the time, its side-effects triggered one of the largest pharmaceutical scandals in history: The medication was taken from the market after it became known that the use of Contergan during pregnancy had resulted in over 10,000 cases of severe birth defects.

Currently, the successor preparations lenalidomide and pomalidomide are prescribed under strict supervision by experienced oncologists - the active ingredients are a cornerstone of modern cancer therapies. The use of lenalidomide and pomalidomide has considerably improved the success rate of therapies and patient survival, particularly for hematological malignancies such as multiple myeloma. Since these substances can influence the immune system, they are referred to as immunomodulatory drugs (IMiDs).

Many membrane proteins affected

Previous studies have shown that IMiDs bind to a protein called cereblon, which results in the malfunction of a protein complex on the surface of tumor cells, thus inhibiting tumor growth. A research team led by Prof. Florian Bassermann and Vanesa Fernández of the university hospital Klinikum rechts der Isar of TUM has now deciphered the exact mechanism and the scope of this dysregulation in a new study.

They discovered that cereblon supports the protein HSP90 as what is known as a co-chaperone; HSP90 is responsible for the correct folding of thousands of proteins in human cells. The scientists were able to show that the support function of the co-chaperone cereblon is specific for membrane proteins. These proteins, which are anchored on the surface of a cell, are essential for tumor cells to grow: They enable cells to communicate with neighboring cells, they pass on growth signals and take in important nutrients.

Upon IMiD-treatment, cereblon can no longer bind to the HSP90 machinery, and as a result loses its supportive function in the quality control of membrane proteins. "Using proteome-wide analyses, we were able to show that a large number of essential proteins on the surface of cancer cells are destabilized by IMiD-treatment," says oncologist Florian Bassermann. "This ultimately explains the unusually broad effects of these substances."

Starving tumor cells

In multiple myeloma the proteins CD98hc and LAT1 are particularly affected. Together these proteins usually ensure that cancer cells are supplied with amino acids. Since cancer cells in the case of multiple myeloma have an especially high need for nutrients like amino acids, CD98hc and LAT1 are very abundant proteins in these cells. The research team has now shown that IMiD-treatment significantly reduces the uptake of essential amino acids and thus inhibits the growth of the tumor cells. "This literally starves out the cancer cells," explains Michael Heider, first author of the study.

New targeted therapeutic options

The discovery that multiple myeloma cells can be attacked by targeting the proteins CD98hc and LAT1 opens up new possibilities for innovative therapies in this currently incurable cancer. Together with Wolfgang Weber, TUM Professor for Nuclear Medicine, the researchers tested a molecule which is aimed at CD98hc, known as an anticalin. The molecule was recently developed by Arne Skerra, Professor for Biological Chemistry at TUM. The results show that the molecule binds specifically to the cell surface protein CD98hc in both cell culture and mouse models. This anticalin could therefore be used for targeted therapy and diagnosis in the future. "Early clinical studies to further evaluate the anticalin are already being planned," says Bassermann.

Technical University of Munich (TUM)

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to