ORNL, Columbia May Help Heart Patients Stay Out Of Hospitals

February 12, 1997

OAK RIDGE, Tenn., Feb. 12, 1997 -- People undergoing angioplasty procedures may some day be able to take heart in knowing their chances of needing additional treatment are lower because of a development by Oak Ridge National Laboratory (ORNL) and Columbia University.

ORNL, a Department of Energy (DOE) multiprogram facility, has developed the production, processing and delivery system to provide a radioisotope researchers believe will make coronary angioplasty more effective at unclogging coronary arteries. Columbia University offers the clinical expertise and is performing studies that could clear the way for an improvement of a procedure performed annually on 400,000 people in the United States.

Of those patients, about 30 percent need additional angioplasty or heart bypass surgery because the arteries become reclogged, often within six months. Nationally, this adds $1 billion to the $4 billion cost of the initial angioplasty procedures.

Cardiology researchers at Columbia have demonstrated that they can use low doses of radiation to inhibit restenosis -- the reclogging of coronary arteries. Low doses of radiation inhibit the rapid proliferation of smooth muscle cells that can form inside the newly unclogged arteries.

The challenge in using radiation is identifying the best radioisotope that has the desired radioactive decay properties, is routinely available and cost effective, said Russ Knapp, group leader of Nuclear Medicine at ORNL.

"The method being studied for delivering the radiation dose uses a tiny filament attached to the end of a flexible wire that a doctor threads through the coronary artery that has been unblocked by previous inflation of a tiny balloon," Knapp said. "With this technique, radiation dosages can vary according to where the wire is as it's guided through the artery." Another major drawback is that the manufacturing process is time-consuming and very expensive.

Columbia University's Judah Weinberger, an interventional cardiologist and associate professor of clinical medicine, came up with the idea of using a solution of a radioisotope to inflate the balloon. The balloon, inflated with a saline solution, enlarges the artery and allows blood to flow more freely. Weinberger suggested the balloon could do both -- unclog the artery and deliver a low dose of radiation to prevent restenosis. All the cardiologist needed was the perfect radioisotope, so Weinberger called Knapp, who has done extensive research on medical uses of radioisotopes.

"I suggested that they consider rhenium-188," Knapp said, "because it is readily available from a generator system that we have developed for hospital use and has excellent radiation properties for this application."

Weinberger suggested a chemical for inflation of the isotope that would deal with a worst-case scenario.

"If the balloon containing the saline and rhenium-188 were to break, the radioisotope is simply expelled in the urine, causing no harm to the patient," Weinberger said.

In addition to identifying the ideal radioisotope, ORNL is providing to Columbia University the radioisotope generator and concentration methods for delivering the proper dose of rhenium-188.

After testing with animals at Columbia University, the next step is obtaining Food and Drug Administration approval to test the technique on patients. If all goes well, the radiation angioplasty technique could be in use within a few years.

"This is a perfect example of how basic research at a national laboratory, combined with clinical studies available at a school of medicine, can lead to something that can benefit thousands of people and improve their quality of life," Knapp said.
-end-
ORNL, one of DOE's multiprogram research facilities, is managed by Lockheed Martin Energy Research Corp.

You may read other press releases from Oak Ridge National Laboratory or learn more about the lab if you have access to the Internet. You can find our information on the World Wide Web at http://www.ornl.gov



DOE/Oak Ridge National Laboratory

Related Radiation Articles from Brightsurf:

Sheer protection from electromagnetic radiation
A printable ink that is both conductive and transparent can also block radio waves.

What membrane can do in dealing with radiation
USTC recently found that polymethylmethacrylate (PMMA) and polyvinyl chloride (PVC) can release acidic substance under γ radiation, whose amount is proportional to the radiation intensity.

First measurements of radiation levels on the moon
In the current issue (25 September) of the prestigious journal Science Advances, Chinese and German scientists report for the first time on time-resolved measurements of the radiation on the moon.

New biomaterial could shield against harmful radiation
Northwestern University researchers have synthesized a new form of melanin enriched with selenium.

A new way to monitor cancer radiation therapy doses
More than half of all cancer patients undergo radiation therapy and the dose is critical.

Nimotuzumab-cisplatin-radiation versus cisplatin-radiation in HPV negative oropharyngeal cancer
Oncotarget Volume 11, Issue 4: In this study, locally advanced head and neck cancer patients undergoing definitive chemoradiation were randomly allocated to weekly cisplatin - radiation {CRT arm} or nimotuzumab -weekly cisplatin -radiation {NCRT arm}.

Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.

Radiation breaks connections in the brain
One of the potentially life-altering side effects that patients experience after cranial radiotherapy for brain cancer is cognitive impairment.

Fragmenting ions and radiation sensitizers
The anti-cancer drug 5-fluorouracil (5FU) acts as a radiosensitizer: it is rapidly taken up into the DNA of cancer cells, making the cells more sensitive to radiotherapy.

'Seeing the light' behind radiation therapy
Delivering just the right dose of radiation for cancer patients is a delicate balance in their treatment regime.

Read More: Radiation News and Radiation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.