U of MN researchers identify new cord blood stem cell

February 13, 2006

Researchers at the University of Minnesota Medical School have discovered a new population of cells in human umbilical cord blood that have properties of primitive stem cells.

Umbilical cord blood is generally known to contain hematopoietic stem cells that can only produce cells found in blood. The new findings, however, identify a small population of cord blood cells with the characteristics of more primitive stem cells that have the potential to produce a greater variety of cell types.

"We are excited by this discovery because it provides additional insight into how stem cells can restore function in the brain after injury," said Walter Low, Ph.D., senior investigator of the study, and professor of Neurosurgery and the Stem Cell Institute at the University of Minnesota.

This research was published in the latest issue of the journal Stem Cells and Development.

Transplantation of these human cord blood stem cells into laboratory rodents with experimental strokes resulted in significant reductions in the size of brain lesion, and improved these animals' use of their limbs.

Some of the transplanted stem cells developed into "neuron-like" cells that are typically found in the brain. In addition, the transplanted cells also induced an unanticipated reorganization of host nerve fibers within the brain, which may explain why the rats regained function, Low said.
-end-
Stroke is a neurological disorder that affects nearly 750,000 people in the United States each year. It can occur because of clots that form in blood vessels in the brain, or because of blood vessel rupture.

University of Minnesota

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.