The second humanoid robot in France

February 13, 2007

The HOAP3 humanoid robot has just arrived at the Laboratory for Computer Science, Robotics and Microelectronics of Montpellier (LIRMM - CNRS - University of Montpellier 2). This platform supplements the one that was installed at the LAAS in Toulouse last June. They were both made in Japan and represent a strong robotics research potential for France.

Research activities in the field of human robotics are expanding rapidly. The establishment of the JRL (Joint Japanese-French Robotics Laboratory) based in both Japan (Tsukuba) and France (Toulouse-LAAS and Montpellier-LIRMM) contributed strongly to the realization, reinforcement and dynamization of the robotics research community in this field. The two humanoid robots are at the core of JRL's research.

The acquisition of HOAP3 by LIRMM, 50% co-financed by the CNRS, is part of this process. Within the framework of JRL-France, the LIRMM will thus offer the national community an open experimental platform for the validation of models or control methods contributing to ambulation and the handling of objects while maintaining balance.

This 8.8 kg, 60 cm tall robot has 28 motorized articulations. It has a large number of sensors including accelerometers, rate gyros, an infra-red range finder, pressure sensors and two cameras. This unit is based around a completely open software platform (RTLinux) allowing all of the researchers interested to freely evaluate and test their new theoretical developments concerning the modeling, control, vision or learning of these.

This platform supplements the one already installed at LAAS in Toulouse, the HRP2 robot, which is more realistic because it is on a "human scale," but also more complex. HOAP3 will allow for very rapid progress because its use is simple and does not require prior validations on a simulator. Furthermore, the software platform used to control the robot will facilitate the integration and the harnessing of work already developed with Linux. On the other hand, the fact that HOAP3 is small means that it cannot perform all of the tasks that a humanoid robot might do in a life-size environment. For these tests, the platform installed at LAAS will thus be complementary. Lastly, HOAP3 has a wireless communication link that allows it to handle teleoperation work or collaboration of mobile robots. One of LIRMM's hopes is to soon have several humanoids so that it can study robot cooperation.
-end-
You can discover HOAP3 at the National Humanoid Robotics Exhibition to be held in Montpellier on March 29 and 30, 2007 (http://www.lirmm.fr/JNRH).

The first hours of HOAP3 at LIRMM in Montpellier © LIRMM (CNRS-UM2). This photo is available from the CNRS photo library, Telephone: 01 45 07 57 90, phototheque@cnrs-bellevue.fr

CONTACTS

Researchers

Philippe Fraisse
Telephone: 04 67 41 85 56
fraisse@lirmm.fr

CNRS

Related Robotics Articles from Brightsurf:

Borrowing from robotics, scientists automate mapping of quantum systems
Riddhi Gupta has taken an algorithm used for autonomous vehicles and adapted it to help characterise and stabilise quantum technology.

COVID-19 should be wake-up call for robotics research
Robots could perform some of the 'dull, dirty and dangerous' jobs associated with combating the COVID-19 pandemic, but that would require many new capabilities not currently being funded or developed, an editorial in the journal Science Robotics argues.

How robots can help combat COVID-19: Science Robotics editorial
Can robots be effective tools in combating the COVID-19 pandemic?

Novel use of robotics for neuroendovascular procedures
The advanced technology has the potential to change acute stroke treatment.

Robotics: Teaming for future soldier combat
The US Army's investment for the 10 year, Army-led foundational research program has resulted in advanced science in four critical areas of ground combat robotics that affect the way US Warfighters see, think, move and team.

New haptic arm places robotics within easy reach
Imagine being able to build and use a robotic device without the need for expensive, specialist kit or skills.

AI-guided robotics enable automation of complex synthetic biological molecules
This article describes a platform that combines artificial intelligence-driven synthesis planning, flow chemistry and a robotically controlled experimental platform to minimize the need for human intervention in the synthesis of small organic molecules.

A step forward in wearable robotics: Exosuit assists with both walking and running
A soft robotic exosuit -- worn like a pair of shorts -- can make both walking and running easier for the wearer, a new study reports.

A first in medical robotics: Autonomous navigation inside the body
Bioengineers at Boston Children's Hospital report the first demonstration of a robot able to navigate autonomously inside the body.

Engineers build a soft robotics perception system inspired by humans
An international team of researchers has developed a perception system for soft robots inspired by the way humans process information about their own bodies in space and in relation to other objects and people.

Read More: Robotics News and Robotics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.