Instruction manual for creating a molecular nose

February 13, 2007

A German version is available here.

An artificial nose could be a real benefit at times: this kind of biosensor could sniff out poisons, explosives or drugs, for instance. Researchers at the Max Planck Institute for Polymer Research and the Max Planck Institute of Biochemistry recently revealed a technique for integrating membrane proteins into artificial structures. Membrane proteins have several important functions in the cell, one of which is to act as receptors, passing on signals from molecules in the air, for example, to the cell interior. They are thus ideal biosensors, but until now were difficult to access in the lab. However, Max Planck scientists have now managed to incorporate in-vitro synthesized membrane proteins directly into artificial lipid membranes (Angewandte Chemie, International Edition, January 15, 2007).

The senses of living organisms function using various mechanisms, among other things utilizing membrane proteins as receptors. Researchers at the Max Planck Institute for Polymer Research and the Max Planck Institute of Biochemistry have now succeeded in creating biosensors by incorporating such proteins into artificial structures. The membrane proteins are synthesized in-vitro directly from the genetic information introduced to the cell extract.

Previous attempts to create biosensors from membrane proteins failed due to an idiosyncrasy of these proteins: they are not water soluble. In the past, researchers tried to remove the proteins from their biological membranes by solubilising the latter using detergents. However, this destroys the natural folding structure of the protein membranes, which is precisely what makes the proteins so special. "We quickly realized how difficult it is to isolate such membrane proteins. Neither we, nor other research groups, were able to work with them using conventional methods," explains Dr. Eva-Kathrin Sinner of the Max Planck Institute for Polymer Research in Mainz .

Yet the Max Planck researchers found a way around this: they succeeded in incorporating the proteins in an artificial matrix, just as they would be integrated in a natural cell membrane. They achieved this by introducing the developing membrane proteins to artificial lipid membrane systems that mimic natural cell membranes from a statu nascendi, and the membrane proteins actually did simply insert themselves into the artificial membranes. The odorant receptors selected by the researchers were a type of G-protein coupled receptor taken from brown rats. The scientists were also able to prove that the odorant receptors maintained their biological functions by demonstrating the binding of odorants to the receptors. "We now have something akin to an instruction manual on how membrane proteins that were previously difficult to access can be produced and analyzed in their active structure," says Sinner.

The new procedure developed by Eva-Kathrin Sinner and her research group makes it possible, for the first time, to examine the natural functions of such membrane proteins in situ. This is of considerable importance to pharmaceuticals research, as it means that new active agent screenings can now be carried out using receptors that were inaccessible until now. Sinner was awarded the Engelhorn Foundation's 2007 Research Prize for the Promotion of Biotechnology and Gene Technology for the development of this procedure.
-end-
Original work:
Robelek, R.; Lemker, E.S.; Wiltschi, B.; Kirste, V.; Naumann, R.; Oesterhelt, D.; Sinner, E.-K. Incorporation of in vitro Synthesized GPCR into a Tethered Artificial Lipid Membrane System.
Angewandte Chemie, International Edition, January 15, 2007

Max-Planck-Gesellschaft

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.