Researchers create new super-thin laser mirror

February 13, 2007

Berkeley -- Engineers at the University of California, Berkeley, have created a new high-performance mirror that could dramatically improve the design and efficiency of the next generation of devices relying upon laser optics, including high-definition DVD players, computer circuits and laser printers.

The new mirror packs the same 99.9 percent reflective punch as current high-grade mirrors, called distributed Bragg reflectors (DBRs), but it does so in a package that is at least 20 times thinner, functional in a considerably wider spectrum of light frequencies, and easier to manufacture. All these characteristics present critical advantages for today's ever smaller integrated optical devices.

Connie J. Chang-Hasnain, director of UC Berkeley's Center for Optoelectronic Nanostructured Semiconductor Technologies, developed the super-thin mirror, or "high-index contrast sub-wavelength grating (HCG)," with her graduate students, Michael Huang and Ye Zhou. Their work is described in this month's issue of the journal Nature Photonics.

"Today's semiconductor lasers demand mirrors that can deliver high reflectivity, but without the extra thickness," said Chang-Hasnain, who is also a UC Berkeley professor of electrical engineering and computer science. "When you reduce the thickness of a mirror, you are significantly reducing the mass of the device, which also translates into lower power consumption. The mirror we've developed overcomes the hurdles that have stalled the advancement of certain lasers."

To get the coherent, single wavelength light of a laser beam requires a pair of mirrors at opposite ends of a photon-generating gain medium. Light photons of a specific frequency bounce back and forth between the mirrors, building up energy with each pass. As this effect levels off, the gain is said to be saturated, and the light energy is transferred into a laser beam.

Early versions of semiconductor lasers used crystal for the mirrors, which yielded a mere 30 percent reflection. Such a low reflectivity is too inefficient for vertical-cavity surface-emitting lasers (VCSEL) - used in short-range optical communications, optical mice for computers and other applications requiring low power consumption. VCSELs have a particularly short gain medium, so a highly reflective mirror is needed.

High reflectivity can be achieved with DBRs, in which light passes through alternating layers of aluminum gallium arsenide, which has a refractive index of 3.0, and gallium arsenide, which has a higher refractive index of 3.6. The difference in refractive indices allows a small amount of light to be reflected from each pair of alternating layers. The light from the multiple layers adds up to form a strongly reflected coherent beam.

"DBRs can reflect 99.9 percent of light, but it can take up to 80 layers of material to achieve this high reflectivity," said Huang, lead author of the paper. "The DBR ends up being a relatively thick 5 micrometers wide. The precision necessary for the layers also requires a complicated manufacturing process. Our mirror is thinner and will be easier to manufacture, which keeps the cost low."

Instead of multiple levels of alternating refractive-index layers, the HCG mirror developed by the UC Berkeley engineers contains only one pair. In this study, the engineers used aluminum gallium arsenide for the high refractive index layer, coupled with a layer of air, which has a very low refractive index of 1. In addition, the high refractive index layer contained grooves spaced by a distance that is less than a wavelength of light.

In this configuration, light hitting the mirror surface was directed over the grooves. As the light waves passed each semiconductor-air interface, they were strongly reflected back in the opposite direction. The researchers noted that other materials could replace air as the low refractive index material. Silicon dioxide, for instance, has a refractive index of 1.5.

To demonstrate the reflectivity of the HCG, the researchers replaced one of the two DBRs in a vertical-cavity surface-emitting laser with the new mirror. They confirmed that the HCG is capable of providing reflectivity greater than 99.9 percent, equivalent to the DBR.

"The HCG mirror overcomes many of the hurdles that had slowed the advance of VCSEL research," said study co-author Zhou. "In addition to being thinner, it has the advantage of working in a broader range of light frequencies."

The latter attribute is particularly important as optical disc technologies increasingly employ blue-violet lasers, which operate on a shorter wavelength than red lasers. Shorter wavelengths make it possible to focus on smaller units, enabling significantly higher density data storage.

The engineers are also studying applications for the mobile HCG mirror in micro-electromechanical systems (MEMS), such as wavelength tunable lasers, which are used in broadband communications.

"Reducing the size of the laser's mirror also means a dramatic reduction in weight, which is particularly important for high-speed MEMS devices," said Chang-Hasnain.

The researchers added that it may be possible to print this mirror on various surfaces, and that it could one day be used to create organic, plastic displays that can be rolled up for easy transport.

"There is a wide range of products based upon laser optics that could benefit with this thinner mirror," said Huang. "They include light emitting diodes, photovoltaic devices, sensors, computer chips and telecommunications equipment."
-end-
The Defense Advanced Research Projects Agency helped support this research.

University of California - Berkeley

Related Laser Articles from Brightsurf:

Laser technology: New trick for infrared laser pulses
For a long time, scientists have been looking for simple methods to produce infrared laser pulses.

Sensors get a laser shape up
Laser writing breathes life into high-performance sensing platforms.

Laser-powered nanomotors chart their own course
The University of Tokyo introduced a system of gold nanorods that acts like a tiny light-driven motor, with its direction of motion is determined by the orientation of the motors.

What laser color do you like?
Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a microchip technology that can convert invisible near-infrared laser light into any one of a panoply of visible laser colors, including red, orange, yellow and green.

Laser technology: The Turbulence and the Comb
While the light of an ordinary laser only has one single, well-defined wavelength, a so-called ''frequency comb'' consists of different light frequencies, which are precisely arranged at regular distances, much like the teeth of a comb.

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.

Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.

The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.

The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.

Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.

Read More: Laser News and Laser Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.