For some, deep brain stimulation brings lasting improvement in neuropathic pain

February 13, 2013

Philadelphia, Pa. (February 13, 2013) - For many patients with difficult-to-treat neuropathic pain, deep brain stimulation (DBS) can lead to long-term improvement in pain scores and other outcomes, according to a study in the February issue of Neurosurgery, official journal of the Congress of Neurological Surgeons. The journal is published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health.

About two-thirds of eligible patients who undergo DBS achieve significant and lasting benefits in terms of pain, quality of life, and overall health, according to the report by Sandra G.J. Boccard, PhD, and colleagues of University of Oxford, led by Tipu Aziz FMedSci and Alex Green, MD. Some outcomes show continued improvement after the first year, according to the new report, which is one of the largest studies of DBS for neuropathic pain performed to date.

Most Patients Benefit from DBS for Neuropathic Pain

The authors reviewed their 12-year experience with DBS for neuropathic pain. Neuropathic pain is a common and difficult-to-treat type of pain caused by nerve damage, seen in patients with trauma, diabetes, and other conditions. Phantom limb pain after amputation is an example of neuropathic pain.

In DBS, a small electrode is surgically placed in a precise location in the brain. A mild electrical current is delivered to stimulate that area of the brain, with the goal of interrupting abnormal activity. Deep brain stimulation has become a standard and effective treatment for movement disorders such as Parkinson's disease. Although DBS has also been used to treat various types of chronic pain, its role in patients with neuropathic pain remains unclear.

Between 1999 and 2011, that authors' program evaluated 197 patients with chronic neuropathic pain for eligibility for DBS. Of these, 85 patients proceeded to DBS treatment. The remaining patients did not receive DBS--most commonly because they were unable to secure funding from the U.K. National Health Service or decided not to undergo electrode placement surgery.

The patients who underwent DBS were 60 men and 25 women, average age 52 years. Stroke was the most common cause of neuropathic pain, followed by head and face pain, spinal disease, amputation, and injury to nerves from the upper spinal cord (brachial plexus).

In 74 patients, a trial of DBS produced sufficient pain relief to proceed with implantation of an electrical pulse generator. Of 59 patients with sufficient follow-up data, 39 had significant improvement in their overall health status up to four years later. Thus, 66 percent of patients "gained benefit and efficacy" by undergoing DBS.

Benefits Vary by Cause; Some Outcomes Improve with Time

The benefits of DBS varied for patients with different causes of neuropathic pain. Treatment was beneficial for 89 percent for patients with amputation and 70 percent of those with stroke, compared to 50 percent of those with brachial plexus injury.

On average, scores on a 10-point pain scale (with 10 indicating the most severe pain) decreased from about 8 to 4 within the first three months, remaining about the same with longer follow-up. Continued follow-up in a small number of patients suggested further improvement in other outcomes, including quality-of-life scores.

Deep brain stimulation has long been regarded as potentially useful for patients with severe neuropathic pain that is not relieved by other treatments. However, because of the difficulties of performing studies of this highly specialized treatment, there has been relatively little research to confirm its benefits; only about 1,500 patients have been treated worldwide. The new study--accounting for about five percent of all reported patients--used up-to-date DBS technologies, imaging, and surgical techniques.

Dr. Boccard and coauthors acknowledge some important limitations of their study--especially the lack of complete patient follow-up. However, they believe their experience is sufficiently encouraging to warrant additional studies, especially with continued advances in stimulation approaches and technology. The researchers conclude, "Clinical trials retaining patients in long-term follow-up are desirable to confirm findings from prospectively assessed case series."
-end-
About Neurosurgery

Neurosurgery, the Official Journal of the Congress of Neurological Surgeons, is your most complete window to the contemporary field of neurosurgery. Members of the Congress and non-member subscribers receive 3,000 pages per year packed with the very latest science, technology, and medicine, not to mention full-text online access to the world's most complete, up-to-the-minute neurosurgery resource. For professionals aware of the rapid pace of developments in the field, Neurosurgery is nothing short of indispensable.

About Lippincott Williams & Wilkins

Lippincott Williams & Wilkins (LWW) is a leading international publisher of trusted content delivered in innovative ways to practitioners, professionals and students to learn new skills, stay current on their practice, and make important decisions to improve patient care and clinical outcomes. LWW is part of Wolters Kluwer Health, a leading global provider of information, business intelligence and point-of-care solutions for the healthcare industry. Wolters Kluwer Health is part of Wolters Kluwer, a market-leading global information services company with 2011 annual revenues of €3.4 billion ($4.7 billion).

Wolters Kluwer Health

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.