Seven genes for X-linked intellectual disability

February 13, 2015

X-linked intellectual disability is a disorder that predominantly affects men and can have highly variable clinical manifestations. Scientists at the Max Planck Institute for Molecular Genetics in Berlin have found seven new genes that can cause this genetic disease: Mutations of these genes on the X chromosome lead to various forms of intellectual disability. In their work, the researchers used a method of genetic analysis that significantly simplifies the search for rare genetic defects.

X-linked intellectual disability is caused by defective genes on the X chromosome. As males only have one X chromosome and the disease is passed on in a recessive manner, the disorder mainly occurs in boys. Women are affected only if both their X chromosomes carry the defective genes. Women with one healthy and one mutated X chromosome are usually healthy but have a 50% chance of passing the mutated X chromosome on to their offspring.

Because of the high variability of the clinical picture, the search for the responsible genetic defect was, until a few years ago, very tedious. Some families have been waiting for over 15 years for the cause of their relative's disorder to be clarified. An international research team headed by Max Planck researcher Vera Kalscheuer has now analysed 405 families, in which cases of X-linked intellectual disability occur. The researchers have discovered changes in a number of genes that were already known to be related to the disorder. In addition, they discovered that X-linked intellectual disability can also be caused by mutations in seven other genes that, until now, were not associated with the disorder.

For some years now, scientists have been aided in their research of genetic diseases by high-throughput sequencing. This technology allows to sequence a large number of DNA segments simultaneously and to more easily identify genetic defects. Using this method, the scientists investigated all DNA regions of the X chromosome containing protein-relevant information. "In addition to known disease-related genes, we have discovered seven novel genes as the cause of X-linked intellectual disability and analysed what signaling pathways in the cells each protein is involved in," says Kalscheuer. According to the researchers, the clinical presentation and severity of the disorder depend on the responsible gene and the nature of the mutation. For example, if the mutation is located in a region that is important for brain development and protein function, the result is likely to be a more severe disease progression.

With the help of systematic re-sequencing of all X-linked genes, the responsible genetic defect can be identified in around 60 percent of families with X-linked intellectual disability. This requires that a condition known as fragile-X syndrome, caused by an expansion of a trinucleotide repeat, has been ruled out. However, this cannot be done with the method used here.

According to the scientists, the proteins associated with the newly discovered genes may also be involved in epilepsy, autism and schizophrenia. In future, the researchers aim to investigate the functions of the responsible proteins more closely in order to improve our understanding of what causes these and similar disorders.
-end-
Original publication:

Hu H, et al.

X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

Molecular Psychiatry (2015). doi:10.1038/mp.2014.193

Max-Planck-Gesellschaft

Related Chromosome Articles from Brightsurf:

The bull Y chromosome has evolved to bully its way into gametes
In a new study, published Nov. 18 in the journal Genome Research, scientists in the lab of Whitehead Institute Member David Page present the first ever full, high-resolution sequence of the Y chromosome of a Hereford bull.

Evolution of the Y chromosome in great apes deciphered
New analysis of the DNA sequence of the male-specific Y chromosomes from all living species of the great ape family helps to clarify our understanding of how this enigmatic chromosome evolved.

The male Y chromosome does more than we thought
While the Y chromosome's role was believed to be limited to the functions of the sexual organs, an University of Montreal's scientist has shown that it impacts the functions of other organs as well.

The birth of a male sex chromosome in Atlantic herring
The evolution of sex chromosomes is of crucial importance in biology as it stabilises the mechanism underlying sex determination and usually results in an equal sex ratio.

Why the 'wimpy' Y chromosome hasn't evolved out of existence
The Y chromosome has shrunken drastically over 200 million years of evolution.

Novel insight into chromosome 21 and its effect on Down syndrome
A UCL-led research team has, for the first time, identified specific regions of chromosome 21, which cause memory and decision-making problems in mice with Down syndrome, a finding that provides valuable new insight into the condition in humans.

Breakthrough in sex-chromosome regulation
Researchers at Karolinska Institutet in Sweden have uncovered a chromosome-wide mechanism that keeps the gene expression of sex chromosomes in balance in our cells.

B chromosome first -- mechanisms behind the drive of B chromosomes uncovered
B chromosomes are supernumerary chromosomes, which often are preferentially inherited and showcase an increased transmission rate.

Unveiling disease-causing genetic changes in chromosome 17
Extensive single Watson-Crick base pair mutations can occur in addition to duplication or deletion of an entire group of genes on chromosomal region 17p11.2.

What causes rats without a Y chromosome to become male?
A look at the brains of an endangered spiny rat off the coast of Japan by University of Missouri (MU) Bond Life Sciences Center scientist Cheryl Rosenfeld could illuminate the subtle genetic influences that stimulate a mammal's cells to develop as male versus female in the absence of a Y chromosome.

Read More: Chromosome News and Chromosome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.