Google-style ranking used to describe gene connectivity

February 13, 2015

Using the technique known as "Gene Rank" (GR), Dartmouth's Norris Cotton Cancer Center investigator Eugene Demidenko, PhD, captured and described a new characterization of gene connectivity in "Microarray Enriched Gene Rank," published in BioData Mining. The effective computer algorithm can be used to compare tissues across or within organisms at great speed with a simple laptop computer.

"This paper introduces a new bioinformatics concept called Gene Rank (GR)," explained Demidenko. "GR is computed based on gene expression data and reflects how well a particular gene is connected to other genes. Our GR is built along the lines of PageRank used by Google to rank and display web pages upon key word search."

As a new scientific concept, GR looks at genetic networks from a different angle that may lead to new biological insights and formulation of new scientific hypothesis with important clinical applications. Many other studies in bioinformatics have tested their concepts using computer simulation. Demidenko tested GR on various de novo studies, resulting in plausible biological findings. For example, one series tested the complexity of genes in four stages of the development of rice, showing that it gradually increased over time. A subsequent test of Drosophila flies showed their genes to be more complex than rice, but less complex than human genes. These are expected findings, and meeting biological expectations is respected validation of concept.

Demidenko applied the GR concept to several cancer-related gene expression data sets, and discovered that disconnected genes in tumors are cancer associated. "It's a provocative statement, but we can say that cancer genes are lonely killers," said Demidenko. Further investigation revealed that GR of the same gene changes during cancer development, and that this can be used for disease prognosis as well as early cancer detection.

"The devised computer algorithm allows the computation of GR for 50 thousand genes and 500 samples within just a few minutes on a personal computer," said Demidenko. "Our GR can be used by researchers on a daily basis to investigate and characterize the dynamic complexity of living bodies. In particular, this will be helpful to characterize malignant tumors."

Future work for Demidenko includes applying the new GR to other data sets to determine how gene connectivity changes in the course of a tumor's development, and how gene connectivity varies across tumors.
-end-
Eugene Demidenko, PhD is professor of the recently-established department of Biomedical Data Science at Dartmouth's Geisel School of Medicine, and an adjunct professor at both the Thayer School of Engineering and the Department of Mathematics at Dartmouth College. His work in cancer is facilitated by Dartmouth's Norris Cotton Cancer Center. This work was supported by National Institutes of Health grants P20RR024475 and P20GM103534 with additional support from Dr. Jason Moore, director of Dartmouth's Institute for Quantitative Biological Sciences.

About Norris Cotton Cancer Center at Dartmouth-Hitchcock


Norris Cotton Cancer Center combines advanced cancer research at Dartmouth and the Geisel School of Medicine with patient-centered cancer care provided at Dartmouth-Hitchcock Medical Center in Lebanon, NH, at Dartmouth-Hitchcock regional locations in Manchester, Nashua, and Keene, NH, and St. Johnsbury, VT, and at 12 partner hospitals throughout New Hampshire and Vermont. It is one of 41 centers nationwide to earn the National Cancer Institute's "Comprehensive Cancer Center" designation. Learn more about Norris Cotton Cancer Center research, programs, and clinical trials online at cancer.dartmouth.edu.

The Geisel School of Medicine at Dartmouth

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.