Nav: Home

New method to detect ultrasound with light

February 13, 2017

A tiny, transparent device that can fit into a contact lens has a bright future, potentially helping a range of scientific endeavors from biomedicine to geology.

Developed by Northwestern University scientists, the device, called the Micro-ring resonator detector, can determine the speed of the blood flow and the oxygen metabolic rate at the back of the eye. This information could help diagnose such common and debilitating diseases as macular degeneration and diabetes.

The Micro-ring device builds upon Professor Hao F. Zhang's groundbreaking work in 2006 to develop photoacoustic imaging, which combines sound and light waves to create images of biological materials. The imaging technique is being widely explored for both fundamental biological investigations and clinical diagnosis, from nanoscopic cellular imaging to human breast cancer screening.

For three years, Zhang, associate professor of biomedical engineering, worked with Cheng Sun, associate professor of mechanical engineering, and their post-doctoral fellows Biqin Dong and Hao Li to create the Micro-ring resonator detector.

"We believe that with this technology, optical ultrasound detection methods will play an increasingly important role in photoacoustic imaging for the retina and many biomedical applications," Zhang said.

The team's work on the device resulted in a review article, published in the January 2017 edition of the journal Transactions on Biomedical Engineering.

In 2006, Zhang was exploring new retinal imaging technologies when Dr. Amani Fawzi, now an associate professor of ophthalmology at Northwestern's Feinberg School of Medicine, approached him to create a new diagnostic device that could measure biological activities at the back of the eye.

"We needed a device that had large enough bandwidth for spatial resolution," Zhang said. "And it needed to be optically transparent to allow light to go through freely."

"Ultrasound detection devices of that time were usually bulky, opaque, and not sensitive enough. And they had limited bandwidth," Sun said. "It could only capture part of it what was happening in the eye."

To meet Fawzi's challenge, the team needed to develop a radically different type of detector -- small enough to be used with human eyes, soft enough to be integrated into a contact lens and yet generate a super-high resolution of hundreds of megahertz.

"The trouble was to fabricate it, have it fit in the size of a contact lens, and make it still work," Sun said.

First, the team considered a device that placed the needle-sized detector on the eyelid, but that method was not ideal. Next, they landed on the idea of a tiny ring implanted in a single-use contact lens worn during diagnosis.

However, that idea added an extra challenge -- making the device transparent.

After nearly three years of work, they created the plastic Micro-ring resonator, a transparent device that is 60 micrometers in diameter and 1 micron high. There is movement toward using it with patients.

The team continues to improve the device with support from Northwestern, the National Institutes of Health, Argonne National Laboratory, and the National Science Foundation.

As word spreads about the device, about a dozen scientists from a variety of fields have approached the team about adapting it for their own work. For instance:

- Urologists want to use the system to study the optics of breast cancer cells, information that could lead to new treatments.

- Neuroscientists are interested in using the Micro-ring resonator as a window into rodent brains as a way of studying drug protection for the cortex during different points of a stroke. "Typically, researchers use a pure piece of glass, but this allows for a lot more types of imaging," Zhang said.

- Geologists aim to use the technology to investigate the earth crust and earthquake. "Hearing from a geologist--that was a surprise," he added.
-end-


Northwestern University

Related Macular Degeneration Articles:

Dietary and lifestyle recommendations for patients at risk of macular degeneration
Age-related macular degeneration (AMD) is a major cause of severe visual impairment in older populations and is characterized by progressive destruction of the retinal pigment epithelial cells and photoreceptors due to low-grade inflammation, ischemia and oxidative stress.
Penn team characterizes the underlying cause of a form of macular degeneration
Using an animal model of Best disease in combination with biochemical and optical assays, a team of researchers at the University of Pennsylvania has pinpointed a number of abnormalities that give rise to the impairments seen in the blinding disease.
Communication from doctors could reduce anxiety for macular degeneration patients
Highly effective current treatments for vision loss need to be allied with careful counselling to ensure patients maintain good psychological health as well as good vision, new research recommends.
Assessing the impact of stress in age-related macular degeneration
Age-related macular degeneration (AMD), the leading cause of vision loss among older adults in the United States, is often associated with psychological stress.
Genetic mutations that lead to macular degeneration blindness mapped by new research
Two gene mutations that trigger a retinal disease that causes blindness in one in 5,000 males have been mapped, leading to the potential for new therapeutic treatments.
Clinical trial tests cord tissue to treat macular degeneration
UIC is part of a national phase 2 clinical trial to evaluate the safety and tolerability of using cells derived from multipotent umbilical cord cells to treat age-related macular degeneration, the most common cause of vision loss in people over 55.
Macular degeneration insight identifies promising drugs to prevent vision loss
In a study published this week in the Proceedings of the National Academy of Sciences, a University of Wisconsin-Madison research team pinpoints how immune abnormalities beneath the retina result in macular degeneration, a common condition that often causes blindness.
BrightFocus Foundation honors 5 researchers on macular degeneration and glaucoma
BrightFocus Foundation today recognized five scientists in the fields of macular degeneration and glaucoma research, awarding them grants named in honor of leaders in vision research and advocacy.
Age-related macular degeneration before and after the era of anti-VEGF drugs
In a study of nearly 650 people with the eye disease age-related macular degeneration (AMD), half still had vision 20/40 or better, typically good enough to drive or to read standard print, after five years of treatment with anti-VEGF drugs that are injected into the eye.
Discovery identifies new RX target for age-rleated macular degeneration & Alzheimer's
For the first time, researchers at LSU Health New Orleans have shown that a protein critical to the body's ability to remove waste products from the brain and retina is diminished in age-related macular degeneration, after first making the discovery in an Alzheimer's disease brain.

Related Macular Degeneration Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".