Nav: Home

Superconductivity with two-fold symmetry -- new evidence for topological superconductor SrxBi2Se3

February 13, 2017

The study on topological superconductors (TSCs) is one of the hotspots in the field of condensed matter physics and has drawn great attention. Recently, Prof. Hai-Hu Wen's group from Nanjing University succeeds in detecting the two-fold symmetry of the superconductivity in SrxBi2Se3, which provides new evidence for the argument that SrxBi2Se3 is a TSC.

The corresponding paper (Superconductivity with Two-Fold Symmetry in Topological Superconductor SrxBi2Se3) is published on Science China Physics, Mechanics & Astronomy. The researchers detected the c-axis resistivity measured on high-quality SrxBi2Se3 single crystals by using the Corbino-shaped electrode with the magnetic field rotating in the basal plane. With this configuration, the vortex contribution to resistivity is supposed to be the same for any angles and the intrinsic information of the superconductivity can be obtained.

Topological superconductors (TSCs) are novel quantum phases. The unconventional superconductivity in TSCs cannot be connected to a topological trivial phase adiabatically without closing the superconducting gap. As a consequence, a TSC is supposed to possess robust gapless excitations on the boundary or surface. Because of the particle-hole symmetry of superconducting states, the excitation at zero energy is composed of same weight of electrons and holes. Such a zero energy excitation satisfies the requirement of Majorana fermions whose antiparticle is identical to itself. The Majorana fermions in TSCs have various exotic phenomena and can help to realize topological quantum computation.

Doping induced superconductors from topological insulators are predicted to be topological superconductors by theorists. Prof. Ando's group studied these materials by point contact tunneling measurements and proved that the superconductivity of the materials was consistent with the expectation of TSC. However, some other groups drew an opposite conclusion by the scanning tunneling spectroscopy (STM) studies. This makes the issue under intensive debates.

This research performed the c-axis resistivity measurements with an angle-dependent in-plane magnetic field on four SrxBi2Se3 samples with the Corbino-shape like electrode configuration. Dramatic two-fold symmetry features were observed in all the angular dependent resistance measurements at low magnetic fields and temperatures. This is consistent with the earlier experiments by NMR and angle resolved magnetocaloric measurements. Prof. Fu modulated the theoretical calculation and stated that the two-fold symmetry indicated the nontrivial topological order of the superconductivity in SrxBi2Se3.

"This research provides the evidence of topological superconductivity in SrxBi2Se3," said the researchers, "and also widen and deepen our understanding of the topological superconductivity."
-end-
This research was funded by the National Natural Science Foundation of China (NSFC) (Grant Nos. 11534005, and 11190023), the Ministry of Science and Technology of China (Grant No. 2016YFA0300401).

See the article:

Guan Du, YuFeng Li, J. Schneeloch, R. D. Zhong, GenDa Gu, Huan Yang, Hai Lin, and Hai-Hu Wen, Superconductivity with Two-Fold Symmetry in Topological Superconductor SrxBi2Se3, Science China Physics, Mechanics & Astronomy, 2017, 60 (3): 037411

Link: http://engine.scichina.com/publisher/scp/journal/SCPMA/60/3/10.1007/s11433-016-0499-x?slug=full%20text

Science China Press

Related Superconductivity Articles:

Stressing metallic material controls superconductivity
No strain, no gain -- that's the credo for Cornell researchers who have helped find a way to control superconductivity in a metallic material by stressing and deforming it.
First report of superconductivity in a nickel oxide material
Scientists at SLAC and Stanford have made the first nickel oxide material that shows clear signs of superconductivity - the ability to transmit electrical current with no loss.
A hallmark of superconductivity, beyond superconductivity itself
Physicists have found 'electron pairing,' a hallmark feature of superconductivity, at temperatures and energies well above the critical threshold where superconductivity occurs.
Manipulating superconductivity using a 'mechanic' and an 'electrician'
Strongly correlated materials can change their resistivity from infinity to zero with minute changes in conditions.
Triplet superconductivity demonstrated under high pressure
Researchers in France and Japan have demonstrated a theoretical type of unconventional superconductivity in a uranium-based material, according to a study published in the journal Physical Review Letters.
The mechanism of high-temperature superconductivity is found
Russian physicist Viktor Lakhno from Keldysh Institute of Applied Mathematics, RAS considers symmetrical bipolarons as a basis of high-temperature superconductivity.
Superconductivity is heating up
Theory suggests that metallic hydrogen should be a superconductor at room temperature; however, this material has yet to be produced in the lab.
Light pulses provide a new route to enhance superconductivity
Scientists have shown that pulses of light could be used to turn materials into superconductors through an unconventional type of superconductivity known as 'eta pairing.'
Graphene on the way to superconductivity
Scientists at HZB have found evidence that double layers of graphene have a property that may let them conduct current completely without resistance.
New quantum criticality discovered in superconductivity
Using solid state nuclear magnetic resonance (ssNMR) techniques, scientists at the U.S.
More Superconductivity News and Superconductivity Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.