Luminescence switchable carbon nanodots follow intracellular trafficking and drug delivery

February 13, 2017

Tiny carbon dots have, for the first time, been applied to intracellular imaging and tracking of drug delivery involving various optical and vibrational spectroscopic-based techniques such as fluorescence, Raman, and hyperspectral imaging. Researchers from the University of Illinois at Urbana-Champaign have demonstrated, for the first time, that photo luminescent carbon nanoparticles can exhibit reversible switching of their optical properties in cancer cells.

"One of the major advantages of these agents are their strong intrinsic optical sensitivity without the need for any additional dye/fluorophore and with no photo-bleaching issues associated with it," explained Dipanjan Pan, an assistant professor of bioengineering and the leader of the study. "Using some elegant nanoscale surface chemistry, we created a molecular 'masking' pathway to turn off the fluorescence and then selectively remove the mask leading to regaining the brightness.

"Using carbon dots for illuminating human cells is not new. In fact, my laboratories, and several other groups around world, have shown that these tiny dots represent a unique class of luminescent materials with excellent biocompatibility, degradability, and relatively facile access to large-scale synthesis in comparison to other popular luminescent materials such as quantum dots," added Pan.

And, the entire process of is highly controlled and can be observed in living cells as they reported in the group's study, "Macromolecularly 'Caged' Carbon Nanoparticles for Intracellular Trafficking via Switchable Photoluminescence," appearing in the Journal of the American Chemical Society.

"We can apply this technique for intracellular trafficking by means of switchable photo-luminescence in mammalian cells in vitro, wherein the endocytic membrane-abundant anionic amphiphilic molecules participates in the 'de-caging' process," stated Pan. "The carbon dots, each measuring less than 50 nanometers in diameter, are derived from agave nectar and are highly luminescent. The in situ nanoscale chemical exchange further probed into the mechanistic understanding of the origin of carbon luminescence and indicated that it is primarily a surface phenomenon.

"This can be reversibly turned on and off by a simple counter-ionic nanoscale chemistry," Pan said. "These results can become the basis for new and interesting designs for carbon-based materials for intracellular imaging probing cellular function and to study other biological processes."

While the origin of luminescence in carbon dots is still quite a mystery, Pan and his collaborators have previously demonstrated that these particles can be used to simultaneously track carrier and quantitative release of cargo using hyperspectral imaging (Advanced Functional Materials 26, 2016, 8031-8041) or Vibrational spectroscopy based techniques (Sci Rep. 2016 Jul 11;6:29299.; Small. 2016 12 (42), 5845-861.; Small. 2015 Sep;11(36):4691-703).
Santosh Misra, a postdoctoral researcher, and Indrajit Srivastava, a graduate student in Pan's lab contributed as study first authors. Co-authors included several members of the research group--Dr. Indu Tripthi, Enrique Daza, and Fatemeh Ostadhossein--who contributed to this work.

University of Illinois College of Engineering

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to