Nav: Home

Breaking local symmetry: Why water freezes but silica forms a glass

February 13, 2018

Tokyo - Everyone knows that water freezes at 0°C. Life on Earth would be vastly different if this were not so. However, many are less familiar with water's cousin, silica, whose wayward behavior when cooled has long puzzled scientists.

Unlike water, silica (SiO2) does not freeze easily. When liquid silica cools, its atoms fail to arrange into an ordered crystal. Instead, as temperature decreases, the liquid state survives even far below the nominal freezing temperature; this phenomenon is termed supercooling. Eventually, the atoms are simply locked into place wherever they are, preserving the structural disorder of the liquid. The resulting frozen state of matter - mechanically solid, but microscopically liquid-like - is a glass.

Silica's preference for glass-formation has major consequences, since it is among the most abundant compounds on our planet, along with water. In some ways, the two liquids are alike - they have similar coordination geometries with tetrahedral symmetry, and both display an unusual tendency to become less dense below a certain temperature on cooling, but more fluid upon pressurizing. They even show analogous crystal structures, when silica can be coaxed into freezing.

Recently, researchers at The University of Tokyo's Institute of Industrial Science uncovered vital clues as to why water and silica diverge so starkly when they become cold. In a study published in PNAS, their simulations revealed the influence of the local symmetric arrangement of atoms in the liquid state on crystallization. It turns out that the atoms arrange properly in water while not in silica.

When liquids cool, order emerges from randomness, as the atoms assemble into patterns. From the viewpoint of any individual atom, a series of concentric shells appear as its neighbors gather round. In both water and silica, the first shell (around each O or Si atom, respectively) is tetrahedral in shape - a case of "orientational ordering, or, symmetry breaking." The key difference comes from the second shell structure. For water, it is still arranged properly with orientational order, but for silica, the second shell is randomly smeared around with little orientational order.

"In water, the locally ordered structures are precursors to ice; that is, tetrahedral crystals of H2O," co-author Rui Shi explains. "The orientational ordering, or rotational symmetry breaking, in a liquid state explains why water freezes so easily. In supercooled silica, however, the lack of orientational ordering prevents crystallization, resulting in easy glass formation. In other words, the rotational symmetry is harder to break in silica's liquid structure, and with less orientational order."

The researchers explain this difference by comparing the bonding in the two substances. Water consists of individual H2O molecules, held together by strong covalent bonds but interacting via weaker hydrogen bonds. The stable molecular structure of water restricts the freedom of atoms, resulting in high orientational order in water. Silica, however, has no molecular form, and atoms are resultantly bonded in a less directional way, leading to poor orientational order.

"We showed that the macroscopic differences between water and silica originate in the microscopic world of bonding," corresponding author Hajime Tanaka says. "We hope to extend this principle to other substances, such as liquid carbon and silicon, that are structurally similar to water and silica. The ultimate goal is to develop a general theory of how glass-formers differ from crystal-formers, which is something that has eluded scientists thus far."
-end-
The article, "Impact of local symmetry breaking on the physical properties of tetrahedral liquids," was published in Proceedings of the National Academy of Sciences at DOI:10.1073/pnas.1717233115.

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.

Research Contact

Professor Hajime Tanaka
Institute of Industrial Science, The University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Tel: 81-3-5452-6125
Fax: 81-3-5452-6126
Email: tanaka@iis.u-tokyo.ac.jp
URL: http://tanakalab.iis.u-tokyo.ac.jp

Institute of Industrial Science, The University of Tokyo

Related Water Articles:

Water, water, nowhere
Researchers at the University of Pittsburgh's Swanson School of Engineering have found that the unusual properties of graphane -- a two-dimensional polymer of carbon and hydrogen -- could form a type of anhydrous 'bucket brigade' that transports protons without the need for water, potentially leading to the development of more efficient hydrogen fuel cells for vehicles and other energy systems.
Advantage: Water
When water comes in for a landing on the common catalyst titanium oxide, it splits into hydroxyls just under half the time.
What's really in the water
Through a five-year, $500,000 CAREEER Award from the National Science Foundation, a civil and environmental engineering research group at the University of Pittsburgh's Swanson School of Engineering will be developing new DNA sequencing methods to directly measure viral loads in water and better indicate potential threats to human health.
Jumping water striders know how to avoid breaking of the water surface
When escaping from attacking predators, different water strider species adjust their jump performance to their mass and morphology in order to jump off the water as fast and soon as possible without breaking of the water surface.
Water, water -- the two types of liquid water
There are two types of liquid water, according to research carried out by an international scientific collaboration.
Just add water? New MRI technique shows what drinking water does to your appetite, stomach and brain
Stomach MRI images combined with functional fMRI of the brain activity have provided scientists new insight into how the brain listens to the stomach during eating.
UM researchers found shallow-water corals are not related to their deep-water counterparts
A new study led by scientists at the University of Miami Rosenstiel School of Marine and Atmospheric Science found that shallow-reef corals are more closely related to their shallow-water counterparts over a thousand miles away than they are to deep-water corals on the same reef.
Saline water better than soap and water for cleaning wounds, researchers find
Researchers found that very low water pressure was an acceptable, low-cost alternative for washing out open fractures, and that the reoperation rate was higher in the group that used soap.
UTA research predicting lake levels, moving water to yield better data for water providers
A University of Texas at Arlington environmental engineer is creating an integrated decision support tool for optimal operation of water supply systems that will allow water providers to make better decisions about when to turn on pumps to transfer water from one reservoir system to another and when to release water downstream from the reservoirs.
Surfing water molecules could hold the key to fast and controllable water transport
Scientists at UCL have identified a new and potentially faster way of moving molecules across the surfaces of certain materials.

Related Water Reading:

Thirst: A Story of Redemption, Compassion, and a Mission to Bring Clean Water to the World
by Scott Harrison (Author), Lisa Sweetingham (Contributor)

Your Body's Many Cries for Water
by F. Batmanghelidj (Author), M.D. (Author)

Dry Gardens: High Style for Low Water Gardens
by Daniel Nolan (Author), Caitlin Atkinson (Photographer), Flora Grubb (Photographer)

The Spiritual Warrior’s Guide to Defeating Water Spirits: Overcoming Demons that Twist, Suffocate, and Attack God’s Purposes for Your Life
by Jennifer LeClaire (Author), John Eckhardt (Foreword)

The Hidden Messages in Water
by Masaru Emoto (Author)

John Waters: Indecent Exposure
by Kristen Hileman (Author), Jonathan D. Katz (Contributor), Robert Storr (Contributor), Wolfgang Tillmans (Contributor)

A Long Walk to Water: Based on a True Story
by Linda Sue Park (Author)

Water Dog: Revolutionary Rapid Training Method
by Richard Wolters (Author), Art Smith (Introduction)

Black Flags, Blue Waters: The Epic History of America's Most Notorious Pirates
by Eric Jay Dolin (Author)

Flour Water Salt Yeast: The Fundamentals of Artisan Bread and Pizza
by Ken Forkish (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Hacking The Law
We have a vision of justice as blind, impartial, and fair — but in reality, the law often fails those who need it most. This hour, TED speakers explore radical ways to change the legal system. Guests include lawyer and social justice advocate Robin Steinberg, animal rights lawyer Steven Wise, political activist Brett Hennig, and lawyer and social entrepreneur Vivek Maru.
Now Playing: Science for the People

#495 Earth Science in Space
Some worlds are made of sand. Some are made of water. Some are even made of salt. In science fiction and fantasy, planet can be made of whatever you want. But what does that mean for how the planets themselves work? When in doubt, throw an asteroid at it. This is a live show recorded at the 2018 Dragon Con in Atlanta Georgia. Featuring Travor Valle, Mika McKinnon, David Moscato, Scott Harris, and moderated by our own Bethany Brookshire. Note: The sound isn't as good as we'd hoped but we love the guests and the conversation and we wanted to...