Nav: Home

Light-activated cancer drugs without toxic side effects: Fresh insight

February 13, 2018

  • Cancer drugs activated by light, minimizing toxic side-effects, are a step closer thanks to new research from University of Warwick and Monash University through the Monash Warwick Alliance

  • Platinum-based chemotherapy drug candidate kills cancer cells in specific targeted areas, and totally inactive unless triggered by light - minimises harm towards healthy tissue

  • Researchers used infrared spectroscopy, an old spectroscopic technique showing a resurgence in recent years, to discover how the anticancer therapy uniquely functions upon activation with light


Future cancer drugs that are activated by light and don't cause the toxic side-effects of current chemotherapy treatments are closer to becoming a reality, thanks to new research made possible by the Monash Warwick Alliance, an intercontinental collaboration between the University of Warwick (UK) and Monash University (Australia).

Led by Robbin Vernooij, a joint PhD student from the Monash Warwick Alliance, fresh insight has been gained into how a pioneering platinum-based chemotherapy drug candidate - trans,trans,trans-[Pt(N3)2(OH)2(py)2] - functions when activated by light.

The treatment - originally developed by Professor Peter Sadler's research group in the University of Warwick's Department of Chemistry - is an inorganic-metal compound with an unusual mechanism, which kills cancer cells in specific targeted areas, in an effort to minimize toxic side-effects on healthy tissue.

Completely inactive and non-toxic in the dark, the treatment can be inserted into cancerous areas, its functions triggered only when directed light hits it - causing the compound to degrade into active platinum and releasing ligand molecules to attack cancer cells.

Using an old spectroscopic technique - infrared spectroscopy - the researchers observed what happens to the structure of the compound by following the metal as well as molecules released from the compound.

The researchers shone infrared light on the inorganic-metal compound in the laboratory, and measured the vibrations of its molecules as it was activated.

From this, they discovered the chemical and physical properties of the compound: some of the organic ligands, which are attached to the metal atoms of the compound, become detached and are replaced with water whilst other ligands remain stable around the metal.

This fresh insight into the mechanics of the treatment offers new hope that photoactive chemotherapy drug candidates, such as trans,trans,trans-[Pt(N3)2(OH)2(py)2], will progress from the laboratory to future clinical trials.

Robbin Vernooij, lead author and joint researcher from the Monash Warwick Alliance, commented:

'"The current short comings of most chemotherapeutic agents are unfortunately undeniable, and therefore there is ongoing effort to develop new therapies and improve our understanding of how these agents work in effort to develop not only more effective, but also more selective, therapies to reduce the burden on patients.

''This is an exciting step forward, demonstrating the power of vibrational spectroscopic techniques combined with modern computing to provide new insights on how this particular photoactive chemotherapeutic agent works, which brings us one step closer to our goal of making more selective and effective cancer treatments''

Peter Sadler, Professor of Chemistry at the University of Warwick, commented:

"About half of all chemotherapy treatments for cancer current use a platinum compound, but if we can introduce new platinum compounds that avoid side-effects and are active against resistant cancers, that would be a major advance.

"Photoactivated platinum compounds offer such possibilities. They do not kill cells until irradiated with light, and the light can be directed to the tumour so avoiding unwanted damage to normal tissue.

"It is important that we understand how these new light-activated platinum compounds kill cancer cells. We believe they attack cancer cells in totally new ways and can combat resistance. Understanding at the molecular levels requires use of all the advanced technology that we can muster. In this case, advances have been made possible by a highly talented research student working with state-of-the-art equipment on opposite sides of the globe.

"We hope that new approaches involving the combination of light and chemotherapy can play a role in combatting the current short comings of cancer therapy and help to save lives."

The majority of cancer patients who undergo chemotherapy treatment currently receive a platinum-based compound, such as cisplatin. These therapies were developed over half a century ago, and cause toxic side-effects in patients, attacking healthy cells as well as cancerous ones.

There is also a growing resistance to more traditional cancer therapies, so new treatments are desperately required.
-end-
The research was carried out between six research groups at both the University of Warwick and Monash University, and was made possible through the internationally-renowned shared expertise and resources across the Monash Warwick Alliance.

Notes to editors:

The research, 'Spectroscopic Studies on Photoinduced Reactions of the Anticancer Prodrug, trans,trans,trans-[Pt(N3)2(OH)2(py)2]', is published in Chemistry: A European Journal.

DOI: 10.1002/chem.201705349

It is authored by Robbin R. Vernooij, Tanmaya Joshi, Michael D. Horbury, Bim Graham, Ekaterina I. Izgorodina, Vasilios G. Stavros, Peter J. Sadler, Leone Spiccia, and Bayden R. Wood.

The paper is dedicated to the memory of our friend, colleague and mentor; Professor Leone Spiccia.

Launched in 2012 - and renewed in 2016 - the Monash Warwick Alliance is a strategic research and teaching partnership between the University of Warwick UK and Monash University in Australia.

University of Warwick

Related Chemotherapy Articles:

Chemotherapy drug may increase vulnerability to depression
A chemotherapy drug used to treat brain cancer may increase vulnerability to depression by stopping new brain cells from growing, according to a new King's College London study out today in Translational Psychiatry.
Sperm changes documented years after chemotherapy
A Washington State University researcher has documented epigenetic changes in the sperm of men who underwent chemotherapy in their teens.
Depressed patients are less responsive to chemotherapy
A brain-boosting protein plays an important role in how well people respond to chemotherapy, researchers report at the ESMO Asia 2016 Congress in Singapore.
Breast cancer study predicts better response to chemotherapy
It is known from previous research that the ER-beta estrogen receptor often has a protective effect.
Personalizing chemotherapy to treat pediatric leukemia
A team of UCLA bioengineers has demonstrated that its technology may go a long way toward overcoming the challenges of treatment for acute lymphoblastic leukemia, among the most common types of cancer in children, and has the potential to help doctors personalize drug doses.
How gut microbes help chemotherapy drugs
Two bacterial species that inhabit the human gut activate immune cells to boost the effectiveness of a commonly prescribed anticancer drug, researchers report Oct.
Molecule prevents effect of chemotherapy
For the last three years the research team has been working on the development of a so-called biomarker to predict treatment effectiveness.
Study provides new clues to leukemia resurgence after chemotherapy
For the first time, researchers have discovered that some leukemia cells harvest energy resources from normal cells during chemotherapy, helping the cancer cells not only to survive, but actually thrive, after treatment.
Dialing up chemotherapy for pancreatic cancer with ultrasound
Researchers at Haukeland University Hospital in Bergen, Norway have combined a laboratory ultrasound technique called 'sonoporation' with the commercially-available chemotherapy compound Gemcitabine to increase the porosity of pancreatic cells with microbubbles and to help get the drug into cancer cells where it is needed.
Vitamin A may help improve pancreatic cancer chemotherapy
The addition of high doses of a form of vitamin A could help make chemotherapy more successful in treating pancreatic cancer, according to an early study by Queen Mary University of London.

Related Chemotherapy Reading:

Chemotherapy and Biotherapy Guidelines and Recommendations for Practice
by Martha Polovich (Author), MiKeala Olsen (Author), Kris Lefebvre (Author)

Physicians' Cancer Chemotherapy Drug Manual 2018
by Edward Chu (Author), Vincent T. DeVita Jr. (Author)

The Chemotherapy Survival Guide: Everything You Need to Know to Get Through Treatment
by Judith McKay (Author), Tammy Schacher RN OCN MSN (Author)

Physicians' Cancer Chemotherapy Drug Manual 2019
by Edward Chu (Author), Vincent T. DeVita Jr. (Author)

Chemotherapy and Radiation For Dummies
by Alan P. Lyss (Author), Humberto Fagundes (Author), Patricia Corrigan (Author)

Cancer Chemotherapy, Immunotherapy and Biotherapy
by Bruce A. Chabner MD (Author), Dan L. Longo MD (Author)

Chemotherapy for Gynecologic Cancers: Society of Gynecologic Oncology Handbook: Third Edition
by Society of Gynecologic Oncology

Chemo: Secrets to Thriving: From someone who’s been there.
by Roxanne Brown (Author), Barbara Mastej (Contributor), John S. Link M.D. (Contributor)

Questioning Chemotherapy
by Ralph W. Moss (Author)

Handbook of Cancer Chemotherapy (Lippincott Williams & Wilkins Handbook Series)
by Lippincott Williams & Wilkins

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.