Nav: Home

UCLA scientists develop low-cost way to build gene sequences

February 13, 2018

A new technique pioneered by UCLA researchers could enable scientists in any typical biochemistry laboratory to make their own gene sequences for only about $2 per gene. Researchers now generally buy gene sequences from commercial vendors for $50 to $100 per gene.

The approach, DropSynth, which is described in the January issue of the journal Science, makes it possible to produce thousands of genes at once. Scientists use gene sequences to screen for gene's roles in diseases and important biological processes.

"Our method gives any lab that wants the power to build its own DNA sequences," said Sriram Kosuri, a UCLA assistant professor of chemistry and biochemistry and senior author of the study. "This is the first time that, without a million dollars, an average lab can make 10,000 genes from scratch."

Increasingly, scientists studying a wide range of subjects in medicine -- from antibiotic resistance to cancer -- are conducting "high-throughput" experiments, meaning that they simultaneously screen hundreds or thousands of groups of cells. Analyzing large numbers of cells, each with slight differences in their DNA, for their ability to carry out a behavior or survive a drug treatment can reveal the importance of particular genes, or sections of genes, in those abilities.

Such experiments require not only large numbers of genes but also that those genes are sequenced. Over the past 10 years, advances in sequencing have enabled researchers to simultaneously determine the sequences of many strands of DNA. So the cost of sequencing has plummeted, even as the process of generating genes has remained comparatively slow and expensive.

"There's an ongoing need to develop new gene synthesis techniques," said Calin Plesa, a UCLA postdoctoral research fellow and co-first author of the paper. "The more DNA you can synthesize, the more hypotheses you can test."

The current methods for synthesizing genes, he said, either limit the length of a gene to about 200 base pairs -- the sets of nucleotides that made up DNA -- or are prohibitively expensive for most labs.

The new method involves isolating small sections of thousands of genes in tiny droplets of water suspended in an oil. Each section of DNA is assigned a molecular "bar code," which identifies the longer gene to which it belongs.

Then, the sections, which initially are present in only very small amounts, are copied many times to increase their number. Finally, small beads are used to sort the mixture of DNA fragments into the right combinations to make longer genes, and the sections are combined. The result is a mixture of thousands of the desired genes, which can be used in experiments.

To show that technique worked, the scientists used DropSynth to make thousands of bacterial genes -- each as long as 669 base pairs in length. Each gene encoded a different bacterium's version of the metabolic protein phosphopantetheine adenylyltransferase, or PPAT, which bacteria need to survive. Because PPAT is critical to bacteria that cause everything from sinus infections to pneumonia and food poisoning, it's being studied as a potential antibiotic target.

The researchers created a mixture of the thousands of versions of PPAT with DropSynth, and then added each gene to a version of E. coli that lacked PPAT and tested which ones allowed E. coli to survive. The surviving cells could then be used to screen potential antibiotics very quickly and at a low cost.

DropSynth could potentially also be useful in engineering new proteins. Currently, scientists can use computer programs to design proteins that meet certain parameters, such as the ability to bind to certain molecules, but DropSynth could offer researchers hundreds or even thousands of options from which to choose the proteins that best fit their needs.

The team is still working on reducing DropSynth's error rate. In the meantime, though, the scientists have made the instructions publicly available on their website. All of the chemical substances needed to replicate the approach are commercially available.
-end-
The study's other authors are graduate students Nathan Lubock and Angus Sidore of UCLA, and Di Zhang of the University of Pennsylvania.

Funding for the study was provided by the Netherlands Organisation for Scientific Research, the Human Frontier Science Program, the National Science Foundation, the National Institutes of Health, the Searle Scholars Program, the U.S. Department of Energy, and Linda and Fred Wudl.

University of California - Los Angeles

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

The Family Tree Guide to DNA Testing and Genetic Genealogy
by Blaine T. Bettinger (Author)

Blueprint: How DNA Makes Us Who We Are (The MIT Press)
by Robert Plomin (Author)

Move Your DNA: Restore Your Health Through Natural Movement Expanded Edition
by Katy Bowman (Author)

DNA: The Story of the Genetic Revolution
by James D. Watson (Author), Andrew Berry (Author), Kevin Davies (Author)

The Innovator's DNA: Mastering the Five Skills of Disruptive Innovators
by Jeff Dyer (Author), Hal Gregersen (Author), Clayton M. Christensen (Author)

Dinosaur DNA: A Nonfiction Companion to the Films (Jurassic World)
by Marilyn Easton (Author)

Native American DNA: Tribal Belonging and the False Promise of Genetic Science
by Kim TallBear (Author)

Who We Are and How We Got Here: Ancient DNA and the New Science of the Human Past
by David Reich (Author)

The DNA of Relationships
by Gary Smalley (Author)

Cosmic Serpent: DNA and the Origins of Knowledge
by Jeremy Narby (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#503 Postpartum Blues (Rebroadcast)
When a woman gives birth, it seems like everyone wants to know how the baby is doing. What does it weigh? Is it breathing right? Did it cry? But it turns out that, in the United States, we're not doing to great at asking how the mom, who just pushed something the size of a pot roast out of something the size of a Cheerio, is doing. This week we talk to anthropologist Kate Clancy about her postpartum experience and how it is becoming distressingly common, and we speak with Julie Wiebe about prolapse, what it is and how it's...