Nav: Home

In effort to treat rare blinding disease, researchers turn stem cells into blood vessels

February 13, 2018

People who inherit a mutated version of the ATF6 gene are born with a malformed or missing fovea, the eye region responsible for sharp, detailed vision. From birth, their vision is severely limited, and there is no cure. Jonathan Lin, MD, PhD, associate professor of pathology at University of California San Diego School of Medicine and Shiley Eye Institute, and team were the first to link ATF6 to this type of inherited vision impairment.

Now, in a study published February 13 in Science Signaling, Lin's team discovered that a chemical compound that activates ATF6 also converts patient-derived stem cells into blood vessels.

"We wanted to see if there was a way to correct this gene defect to restore function and help these patients with vision difficulties and blindness," Lin said. "But it turns out our findings could also help advance the development of new treatments for other diseases caused by lack of blood supply to an organ, such as occurs in stroke and heart attack."

The ATF6 protein is a transcription factor, meaning it helps turn other genes "off" or "on," depending on what's needed by the cell. ATF6 is normally activated when the cell is under stress due to the accumulation of unfolded or misfolded proteins. Lin's team previously found that ATF6 is naturally "on" during stem cell development.

After Lin's team first published the link between the ATF6 gene and this type of inherited vision loss, known as achromatopsia or cone-rod dystrophy, a few years ago, people with these conditions began contacting them from around the world. Many had never known the cause of their vision problems and they were eager to see if they had a mutated copy of the ATF6 gene. They were also eager to contribute to research that would further the understanding of the disease and efforts to find a treatment.

For this latest study, Lin's team collected donated skin samples from a family living in New York. Three children in this family were born without fully functioning ATF6 genes. The researchers dialed the skin cells back, developmentally speaking, to produce induced pluripotent stem cells (iPSCs) -- a special type of cell that can both self-renew, making more iPSCs, and differentiate, specializing into almost any other cell type.

Meanwhile, collaborators at The Scripps Research Institute screened millions of chemical compounds, using robotic technology to test each for their abilities to activate ATF6. They found 10 compounds that looked promising and gave them to Lin's team for testing on the stem cells.

"We weren't sure what to expect," Lin said. "We just hoped one of these compounds would have some kind of positive effect."

That's why the team was particularly surprised, Lin said, when they saw the effects of one of these compounds, known as AA147. Not only did treatment with the AA147 compound activate ATF6 in stem cells, it altered the cells' differentiation path. AA147 directed the stem cells to develop primarily into endothelial cells, which are essential for blood vessel formation.

"Normally, stem cells differentiate into many different cell types and it's difficult to get them to produce a good amount of any one specific cell type," Lin said. "Yet after AA147 treatment, around 70 percent of the culture turned into endothelial cells that were able to form blood vessels. That's the most efficient way to experimentally produce blood vessels that I know of."

Lin cautioned that AA147 is not yet a "bona fide drug" for many reasons. First, the effects they saw have so far only been replicated in cells growing in a laboratory dish, using high concentrations of AA147. They are now developing newer generations of the compound that are more potent at lower doses. Ultimately, AA147 -- or some version of it -- would need to undergo clinical trials for safety and efficacy before it could potentially be used to treat patients.

In the meantime, Lin said, the study provides valuable new information on ATF6's role in human development and how its malfunctioning can lead to blindness.
-end-
Study co-authors also include Heike Kroeger, Neil Grimsey, Wei-Chieh Chiang, Ying Jones, Peter X. Shaw, JoAnn Trejo, UC San Diego; Ryan Paxman, Lars Plate, Evan Powers, Jeffery W. Kelly, R. Luke Wiseman, The Scripps Research Institute; and Stephen H. Tsang, New York Presbyterian Hospital, Columbia University.

This research was funded, in part, by the National Institutes of Health (grants EY027335, NS088485, EY018213, EY024698, EY026682, AG050437, EY019007, CA013696, EY022589, UL1TR001114, AG046495), U.S. Department of Veterans Affairs (merit awards I01BX002284, I01RX002340) and New York State (grants N09G-302, N13G-275).

University of California - San Diego

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...