Nav: Home

Genetic limits threaten chickpeas, a globally critical food

February 13, 2018

Perhaps you missed the news that the price of hummus has spiked in Great Britain. The cause, as the New York Times reported on February 8: drought in India, resulting in a poor harvest of chickpeas. Far beyond making dips for pita bread, chickpeas are a legume of life-and-death importance--especially in India, Pakistan, and Ethiopia where 1 in 5 of the world's people depend on them as their primary source of protein.

As global climate change continues, scientists expect more droughts, heat stress and insect pests--creating need for new varieties of agricultural plants with diverse qualities that will let them cope and adapt to quickly changing conditions. Where could those novel traits come from?

"The wild relatives of crop plants are the most promising reserves of genetic diversity," say Eric Bishop von Wettberg, a plant biologist at the University of Vermont. He led a new research effort that took a deep look at the ecology and genetics of chickpea plants. The scientists discovered an extreme lack of genetic diversity and other threats to the future adaptability of domestic chickpeas. But they also collected wild relatives of chickpeas in southeastern Turkey that hold "great promise," von Wettberg says, as a source of new genes for traits like drought-resistance, resistance to pod-boring beetles, and heat tolerance.

The team's results were published February 13 in the journal Nature Communications.

HUNTING THE WILD CHICKPEA

Along with wheat, barley, peas, and other important crops, chickpea--Cicer arietinum--was probably domesticated in Mesopotamia, within the "Fertile Crescent," about 10,000 years ago. Its closest wild relative, Cicer reticulatum, is now only found in a few provinces of southeastern Anatolia in modern-day Turkey. In 2013, von Wettberg, and colleagues from Turkey and other countries, spent two months surveying parts of Turkey and Kurdistan, near the border of Syria, searching for the two wild plant species most closely related to domestic chickpeas. "The way we found a lot of these populations was by driving around and asking shepherds on the side of the road, 'yabani nohut?' which means 'wild chickpea," von Wettberg says, "then they would take us out in the fields and show us the plants."

At 21 sites, they collected seeds from 371 plants and collected DNA from 839. With this material and other research, they were able to decipher the history of the wild populations of chickpea relatives, estimate how the environment has impacted the genetics of chickpeas, and make links between the wild plants and the domestic ones. They discovered an extreme genetic bottleneck during the plant's domestication history and report that more than 93% of the genetic variation in the wild plants is missing from modern chickpea breeding programs. This lack of diversity threatens the potential of commercial chickpea stock as the conditions in which farmers attempt to grow it--hotter, with a changing palette of pests, diseases, and weather patterns--become less and less like the conditions in which it was originally domesticated.

CONTROLLING GENES

"Despite their potential value in meeting the challenges of modern agriculture, few systematic, range-wide collections of wild relatives exist for any crop species," the team of scientists write, "and even the available wild genetic resources are widely under-utilized for crop improvement." As part of the new study, the scientists explored a large part of the geographic range of the two chickpea relatives, "from the bottom of the mountains to the top," von Wettberg say--seeking to capture the diversity that differing micro-habitats, soil types, and elevations had created in various strains of the species. Then they did extensive crossbreeding of these wild plants with domestic ones. The resulting backcrossed plants and information about their genomes, "shows a way forward for improving chickpeas and many other crops too," says von Wettberg, a professor in UVM's Department of Plant and Soil Science.

Only in recent years have advances in genomics--and understanding how genetics play out in whole organisms--made it realistic for crop breeders to be able to identify traits in wild plants and selectively breed them into domestic stock. In wild chickpea relatives, von Wettberg and the team--with support from USAID and the National Science Foundation--discovered many useful traits, including "striking resistance to insect pests," he says. But these will only be useful, he notes, if they can be bred into plants without causing them to lose key qualities that farmers need, like growing upright instead of along the ground and seed hulls that don't shatter during harvest. "We're now in an age where we can pretty easily figure out what genes control those differences," von Wettberg says, keeping the qualities that mechanized farming requires, "while adding in resistance to drought, disease, and pests."

The genetic material the scientists extracted, and the seeds they collected, greatly expand the global stock of chickpea relatives available to science--and will now be part of international seed and germplasm banks that researchers and breeders can use indefinitely. But, the scientists note, there is an urgent need to collect and conserve the wild relatives of many crops. "They are threatened by habitat fragmentation and loss of native landscapes," von Wettberg says. "Where we were collecting plants in 2013 is now a war zone."
-end-


University of Vermont

Related Genetic Diversity Articles:

Rare genetic disorders: New approach uses RNA in search for genetic triggers
In about half of all patients with rare hereditary disorders, it is still unclear what position of the genome is responsible for their condition.
Major genetic study identifies 12 new genetic variants for ovarian cancer
A genetic trawl through the DNA of almost 100,000 people, including 17,000 patients with the most common type of ovarian cancer, has identified 12 new genetic variants that increase risk of developing the disease and confirmed the association of 18 of the previously published variants.
Use of fetal genetic sequencing increases the detection rate of genetic findings
In a study to be presented Thursday, Jan. 26, in the oral plenary session at 8 a.m.
Diversity without limits
Now, researchers at Temple and Oakland universities have completed a new tree of prokaryotic life calibrated to time, assembled from 11,784 species of bacteria.
Threatened by diversity
Psychologist Brenda Major identifies what may be a key factor in many white Americans' support for Donald Trump.
Genetic diversity crucial to Florida scrub-jay's survival
Legendary conservationist Aldo Leopold once advised: 'To keep every cog and wheel is the first precaution of intelligent tinkering.' For the endangered Florida scrub-jay, new research shows that saving every last grouping among its small and scattered remnant populations is vital to preserving genetic diversity -- and the long-term survival of the species.
Genetic diversity of enzymes alters metabolic individuality
Scientists from Tohoku University's Tohoku Medical Megabank Organization have published research about genetic diversity and metabolome in Scientific Reports.
Expanded prenatal genetic testing may increase detection of carrier status for potentially serious genetic conditions
In an analysis that included nearly 350,000 adults of diverse racial and ethnic background, expanded carrier screening for up to 94 severe or profound conditions may increase the detection of carrier status for a variety of potentially serious genetic conditions compared with current recommendations from professional societies, according to a study appearing in the Aug.
Fix for 3-billion-year-old genetic error could dramatically improve genetic sequencing
Researchers found a fix for a 3-billion-year-old glitch in one of the major carriers of information needed for life, RNA, which until now produced errors when making copies of genetic information.
Genetic diversity important for plant survival when nitrogen inputs increase
Genetic diversity is important for plant species to persist in Northern forests that experience human nitrogen inputs.

Related Genetic Diversity Reading:

Genetic Diversity in Horticultural Plants (Sustainable Development and Biodiversity)
by Dilip Nandwani (Editor)

Shattering: Food, Politics, and the Loss of Genetic Diversity
by Cary Fowler (Author), Pat Mooney (Author)

Cell Biology and Genetics(Biology: the Unity and Diversity of Life, Vol. 1)
by Cecie Starr (Author), Ralph Taggart (Author), Christine Evers (Author), Lisa Starr (Author)

Human Genetic Diversity: Functional Consequences for Health and Disease
by Julian C. Knight (Author)

Volume 1 - Cell Biology and Genetics (Biology: the Unity & Diversity of Life)
by Cecie Starr (Author), Ralph Taggart (Author), Christine Evers (Author)

From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design
by Sean B. Carroll (Author), Jennifer K. Grenier (Author), Scott D. Weatherbee (Author)

Genetics, Diversity and the Biosphere (Biology-on-disc)
by Denson K. McLain (Author)

Volume 1 - Cell Biology and Genetics (Biology: The Unity and Diversity of Life)
by Cecie Starr (Author), Ralph Taggart (Author), Christine Evers (Author), Lisa Starr (Author)

Crop Genetic Diversity in the Field and on the Farm: Principles and Applications in Research Practices (Yale Agrarian Studies Series)
by Devra I. Jarvis (Author), Toby Hodgkin (Author), Anthony H. D. Brown (Author), John Tuxill (Author), Isabel López Noriega (Author), Melinda Smale (Author), Bhuwon Sthapit (Author), Cristián Samper (Foreword)

The Journey of Man: A Genetic Odyssey (Princeton Science Library)
by Spencer Wells (Author), Spencer Wells (Preface)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Hacking The Law
We have a vision of justice as blind, impartial, and fair — but in reality, the law often fails those who need it most. This hour, TED speakers explore radical ways to change the legal system. Guests include lawyer and social justice advocate Robin Steinberg, animal rights lawyer Steven Wise, political activist Brett Hennig, and lawyer and social entrepreneur Vivek Maru.
Now Playing: Science for the People

#495 Earth Science in Space
Some worlds are made of sand. Some are made of water. Some are even made of salt. In science fiction and fantasy, planet can be made of whatever you want. But what does that mean for how the planets themselves work? When in doubt, throw an asteroid at it. This is a live show recorded at the 2018 Dragon Con in Atlanta Georgia. Featuring Travor Valle, Mika McKinnon, David Moscato, Scott Harris, and moderated by our own Bethany Brookshire. Note: The sound isn't as good as we'd hoped but we love the guests and the conversation and we wanted to...