Nav: Home

Giant 'megalodon' shark extinct earlier than previously thought

February 13, 2019

Megalodon--a giant predatory shark that has inspired numerous documentaries, books and blockbuster movies--likely went extinct at least one million years earlier than previously thought, according to new research published Feb. 13 in PeerJ--the Journal of Life and Environmental Sciences.

Earlier research, which used a worldwide sample of fossils, suggested that the 50-foot-long, giant shark Otodus megalodon went extinct 2.6 million years ago. Another recent study attempted to link this extinction (and that of other marine species) with a supernova known to have occurred at about this time.

However, a team of researchers led by vertebrate paleontologist Robert Boessenecker with the College of Charleston, Charleston, South Carolina, noted that in many places there were problems with the data regarding individual fossils in the study estimating the extinction date.

In the new study, the researchers reported every fossil occurrence of O. megalodon from the densely sampled rock record of California and Baja California (Mexico) in order to estimate the extinction.

Besides Boessenecker, the research team included Dana Ehret, of New Jersey State Museum; Douglas Long, of the California Academy of Sciences; Morgan Churchill, of the University of Wisconsin Oshkosh; Evan Martin, of the San Diego Natural History Museum; and Sarah Boessenecker, of the University of Leicester, United Kingdom.

They found that genuine fossil occurrences were present until the end of the early Pliocene epoch, 3.6 million years ago. All later fossils either had poor data provenance and likely came from other fossil sites or showed evidence of being eroded from older deposits. Until 3.6 million years ago, O. megalodon had a continuous fossil record on the West Coast.

"We used the same worldwide dataset as earlier researchers but thoroughly vetted every fossil occurrence, and found that most of the dates had several problems-fossils with dates too young or imprecise, fossils that have been misidentified, or old dates that have since been refined by improvements in geology; and we now know the specimens are much younger," Boessenecker said.

"After making extensive adjustments to this worldwide sample and statistically re-analyzing the data, we found that the extinction of O. megalodon must have happened at least one million years earlier than previously determined."

This is a substantial adjustment as it means that O. megalodon likely went extinct long before a suite of strange seals, walruses, sea cows, porpoises, dolphins and whales all disappeared sometime about 1-2.5 million years ago.

"The extinction of O. megalodon was previously thought to be related to this marine mass extinction-but in reality, we now know the two are not immediately related," Boessenecker said.

It also is further unclear if this proposed mass extinction is actually an extinction, as marine mammal fossils between 1 and 2 million years old are extraordinarily rare-giving a two-million- year-long period of "wiggle room."

"Rather, it is possible that there was a period of faunal turnover (many species becoming extinct and many new species appearing) rather than a true immediate and catastrophic extinction caused by an astronomical cataclysm like a supernova," Boessenecker said.

The researchers speculate that competition with the newly evolved modern great white shark (Carcharodon carcharias) is a more likely reason for megalodon's extinction.

Great whites first show up with serrated teeth about 6 million years ago and only in the Pacific; by 4 million years ago, they are finally found worldwide.

"We propose that this short overlap (3.6-4 million years ago) was sufficient time for great white sharks to spread worldwide and outcompete O. megalodon throughout its range, driving it to extinction-rather than radiation from outer space," Boessenecker said.
-end-


University of Wisconsin Oshkosh

Related Fossils Articles:

Ancestor of all animals identified in Australian fossils
A team led by UC Riverside geologists has discovered the first ancestor on the family tree that contains most animals today, including humans.
Metabolic fossils from the origin of life
Since the origin of life, metabolic networks provide cells with nutrition and energy.
Fossils of the future to mostly consist of humans, domestic animals
In a co-authored paper published online in the journal Anthropocene, University of Illinois at Chicago paleontologist Roy Plotnick argues that the fossil record of mammals will provide a clear signal of the Anthropocene era.
Exceptional fossils may need a breath of air to form
New research led by The University of Texas at Austin has found that a long held belief by paleontologists about the fossilization process may be wrong.
New 'king' of fossils discovered in Australia
Fossils of a giant new species from the long-extinct group of sea creatures called trilobites have been found on Kangaroo Island, South Australia.
Two tiny beetle fossils offer evolution and biogeography clues
Recently, an international team led by Dr. CAI Chenyang, from the Nanjing Institute of Geology and Palaeontology of the Chinese Academy of Sciences, reported two new and rare species of the extant family Clambidae from Burmese amber: Acalyptomerus thayerae Cai and Lawrence, 2019, and Sphaerothorax uenoi Cai and Lawrence, 2019.
Newly described fossils could help reveal why some dinos got so big
A new, in-depth anatomical description of the best preserved specimens of a car-sized sauropod relative from North America could help paleontologists with unraveling the mystery of why some dinosaurs got so big.
Lilly Pilly fossils reveal snowless Snowy Mountains
Leaf fossils discovered high in Australia's Snowy Mountains have revealed a past history of warmer rainforest vegetation and a lack of snow, in contrast with the alpine vegetation and winter snow-covered slopes of today.
Molecular fossils confirm Dickinsonia as one of Earth's earliest animals
By identifying specific biomarkers preserved alongside fossils of oval-shaped life forms from the Ediacaran Period, fossils from which are typically considered one of the greatest mysteries in paleontology, researchers say the ovular organism is not a fungus or protist, as some have thought, but an early animal.
Fossils reveal diverse mesozoic pollinating lacewings
A research group led by professor WANG Bo from the Nanjing Institute of Geology and Palaeontology has provided new insight into the niche diversity, chemical communication, and defense mechanisms of Mesozoic pollinating insects.
More Fossils News and Fossils Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.