Turning desalination waste into a useful resource

February 13, 2019

The rapidly growing desalination industry produces water for drinking and for agriculture in the world's arid coastal regions. But it leaves behind as a waste product a lot of highly concentrated brine, which is usually disposed of by dumping it back into the sea, a process that requires costly pumping systems and that must be managed carefully to prevent damage to marine ecosystems. Now, engineers at MIT say they have found a better way.

In a new study, they show that through a fairly simple process the waste material can be converted into useful chemicals -- including ones that can make the desalination process itself more efficient.

The approach can be used to produce sodium hydroxide, among other products. Otherwise known as caustic soda, sodium hydroxide can be used to pretreat seawater going into the desalination plant. This changes the acidity of the water, which helps to prevent fouling of the membranes used to filter out the salty water -- a major cause of interruptions and failures in typical reverse osmosis desalination plants.

The concept is described today in the journal Nature Catalysis and in two other papers by MIT research scientist Amit Kumar, professor of mechanical engineering John. H. Lienhard V, and several others. Lienhard is the Jameel Professor of Water and Food and the director of the Abdul Latif Jameel Water and Food Systems Lab.

"The desalination industry itself uses quite a lot of it," Kumar says of sodium hydroxide. "They're buying it, spending money on it. So if you can make it in situ at the plant, that could be a big advantage." The amount needed in the plants themselves is far less than the total that could be produced from the brine, so there is also potential for it to be a saleable product.

Sodium hydroxide is not the only product that can be made from the waste brine: Another important chemical used by desalination plants and many other industrial processes is hydrochloric acid, which can also easily be made on site from the waste brine using established chemical processing methods. The chemical can be used for cleaning parts of the desalination plant, but is also widely used in chemical production and as a source of hydrogen.

Currently, the world produces more than 100 billion liters (about 27 billion gallons) a day of water from desalination, which leaves a similar volume of concentrated brine. Much of that is pumped back out to sea, and current regulations require costly outfall systems to ensure adequate dilution of the salts. Converting the brine can thus be both economically and ecologically beneficial, especially as desalination continues to grow rapidly around the world. "Environmentally safe discharge of brine is manageable with current technology, but it's much better to recover resources from the brine and reduce the amount of brine released," Lienhard says.

The method of converting the brine into useful products uses well-known and standard chemical processes, including initial nanofiltration to remove undesirable compounds, followed by one or more electrodialysis stages to produce the desired end product. While the processes being suggested are not new, the researchers have analyzed the potential for production of useful chemicals from brine and proposed a specific combination of products and chemical processes that could be turned into commercial operations to enhance the economic viability of the desalination process, while diminishing its environmental impact.

"This very concentrated brine has to be handled carefully to protect life in the ocean, and it's a resource waste, and it costs energy to pump it back out to sea," so turning it into a useful commodity is a win-win, Kumar says. And sodium hydroxide is such a ubiquitous chemical that "every lab at MIT has some," he says, so finding markets for it should not be difficult.

The researchers have discussed the concept with companies that may be interested in the next step of building a prototype plant to help work out the real-world economics of the process. "One big challenge is cost -- both electricity cost and equipment cost," at this stage, Kumar says.

The team also continues to look at the possibility of extracting other, lower-concentration materials from the brine stream, he says, including various metals and other chemicals, which could make the brine processing an even more economically viable undertaking.
-end-
The research team also included MIT postdoc Katherine Phillips and undergraduate Janny Cai, and Uwe Schroder at the University of Braunschweig, in Germany. The work was supported by Cadagua, a subsidiary of Ferrovial, through the MIT Energy Initiative.

Written by David L. Chandler, MIT News Office

Related links

ARCHIVE: How to achieve "green" desalination

ARCHIVE: 3 Questions: Amit Kumar and Gregory Stephanopoulos on turning waste gases into biofuels

ARCHIVE: Toward cheaper water treatment

ARCHIVE: Getting the salt out

ARCHIVE: A brighter future for filtered seawater

Massachusetts Institute of Technology

Related Desalination Articles from Brightsurf:

A biomimetic membrane for desalinating seawater on an industrial scale
Reverse osmosis is one of the most widely used techniques for the desalination of water.

The Marangoni Effect can be used to obtain freshwater from the sea
A study conducted at the Politecnico di Torino, in collaboration with the Massachusetts Institute of Technology (MIT), and published in the journal Energy and Environmental Science, presents a solar desalination device capable of spontaneously removing the accumulated salt.

Breakthrough technology purifies water using the power of sunlight
A research team, led by Australia's Monash University, has been able to transform brackish water and seawater into safe, clean drinking water in less than 30 minutes using metal-organic frameworks (MOFs) and sunlight.

How clean water technologies could get a boost from X-ray synchrotrons
In a new perspective, SLAC and University of Paderborn scientists argue that research at synchrotrons could help improve water-purifying materials in ways that might not otherwise be possible.

Solar-driven membrane distillation technology that can double drinking water production
A joint research team from the Korea Institute of Science and Technology (KIST), led by Dr.

Chemists advance solar energy storage aimed at global challenges
Multi-university effort develops solar energy storage to enable decentralized electrification systems in remote areas.

Unorthodox desalination method could transform global water management
Over the past year, Columbia Engineering researchers have been refining their unconventional desalination approach for hypersaline brines -- temperature swing solvent extraction (TSSE) -- that shows great promise for widespread use.

Multifunctional porous carbon fibers show significant promise in capacitive desalination
Researchers have developed a material that is up to 40 times faster in desalinating small batches of water than other materials available today.

KIST ensures stability of desalination process with magnesium
A Korean research team found a method to inhibit the fouling of membranes, which are used in the desalination process that removes salt and dissolved substances from seawater to obtain drinking, domestic, and industrial water.

Harnessing the sun to bring fresh water to remote or disaster-struck communities
Researchers at the University of Bath have developed a revolutionary desalination process that has the potential to be operated in mobile, solar-powered units.

Read More: Desalination News and Desalination Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.