Nav: Home

Decoding the human immune system

February 13, 2019

For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome. In a new study published in Nature from the Human Vaccines Project, scientists have sequenced a key part of this vast and mysterious system -- the genes encoding the circulating B cell receptor repertoire.

Sequencing these receptors in both adults and infants, the scientists found surprising overlaps that could provide potential new antibody targets for vaccines and therapeutics that work across populations. As part of a large multi-year initiative, this work seeks to define the genetic underpinnings of people's ability to respond and adapt to an immense range of disease.

Led by scientists at Vanderbilt University Medical Center and the San Diego Supercomputer Center, this advancement is possible due to the merging of biological research with high-powered frontier supercomputing. While the Human Genome Project sequenced the human genome and led to the development of novel genomics tools, it did not tackle the size and complexity of the human immune system.

"A continuing challenge in the human immunology and vaccine development fields has been that we do not have comprehensive reference data for what the normal healthy human immune system looks like," says James E. Crowe, Jr., MD, Director of the Vanderbilt Vaccine Center of Vanderbilt University Medical Center, senior author on the new paper, which was published online in Nature on Feb. 13. "Prior to the current era, people assumed it would be impossible to do such a project because the immune system is theoretically so large, but this new paper shows it is possible to define a large portion, because the size of each person's B cell receptor repertoire is unexpectedly small."

The new study specifically looks at one part of the adaptive immune system, the circulating B cell receptors that are responsible for the production of antibodies that are considered the main determinant of immunity in people. The receptors randomly select and join gene segments, forming unique sequences of nucleotides known as receptor "clonotypes." In this way, a small number of genes can lead to an incredible diversity of receptors, allowing the immune system to recognize almost any new pathogen.

Conducting leukapheresis on three individual adults, the researchers cloned and sequenced up to 40 billion cells to sequence the combinations of gene segments that comprise the circulating B cell receptors -- achieving a depth of sequencing never before done. They also sequenced umbilical cord blood from three infants. The idea was to collect a vast amount of data on a few individuals, rather than the traditional model of collecting only a few points of data on many.

"The overlap in antibody sequences between individuals was unexpectedly high," Crowe explains, "even showing some identical antibody sequences between adults and babies at the time of birth." Understanding this commonality is key to identifying antibodies that can be targets for vaccines and treatments that work more universally across populations.

A central question was whether the shared sequences across individuals were the result of chance, rather than the result of some shared common biological or environmental factor. To address this issue, the researchers developed a synthetic B cell receptor repertoire and found that "the overlap observed experimentally was significantly greater than what would be expected by chance," says Robert Sinkovits, Ph.D., of the San Diego Supercomputer Center at the University of California, San Diego.

As part of a unique consortium created by the Human Vaccines Project, the San Diego Supercomputer Center applied its considerable computing power to working with the multiple terabytes of data. A central tenet of the Project is the merger of biomedicine and advanced computing. "The Human Vaccines Project allows us to study problems at a larger scale than would be normally possible in a single lab and it also brings together groups that might not normally collaborate," Sinkovits says.

Continued collaborative work is now under way to expand this study, including: sequencing other areas of the adaptive immune system, the T cell repertoire; adding additional demographics such as supercentenarians and international populations; and applying AI-driven algorithms to further mine the datasets for insights. The goal is to continue to interrogate the shared components of the immune system to develop safer and highly targeted vaccines and immunotherapies that work across populations.

"Due to recent technological advances, we now have an unprecedented opportunity to harness the power of the human immune system to fundamentally transform human health," says Wayne Koff, Ph.D., CEO of the Human Vaccines Project. "Decoding the human immune system is central to tackling the global challenges of infectious and non-communicable diseases, from cancer to Alzheimer's to pandemic influenza. This study marks a key step toward understanding how the human immune system works, setting the stage for developing next-generation health products through the convergence of genomics and immune monitoring technologies with machine learning and artificial intelligence."
-end-
The new paper, "High frequency of shared clonotypes in human B cell receptor repertoires," was published online in Nature on Feb. 13, 2019, and will appear in the Feb. 21, 2019, print issue. The work was supported by a grant from the Human Vaccines Project, and institutional funding from Vanderbilt University Medical Center.

About the Human Vaccines Project

The Human Vaccines Project is a bold public-private initiative that aims to decode the human immune system to make the next leap forward in human health. By cracking the code to human health, the Project will enable the creation of next-generation vaccines, diagnostics, and therapies across diseases. Learn more: http://www.humanvaccinesproject.org

About Vanderbilt University Medical Center

Vanderbilt University Medical Center is one of the nation's leading academic medical centers and is the largest comprehensive health system in Tennessee. Its core missions are the delivery of patient care, performing biomedical research and training future leaders in health care. Learn more: ww2.mc.vanderbilt.edu

About San Diego Supercomputer Center

As an Organized Research Unit of UC San Diego, the San Diego Supercomputer Center is considered a leader in data-intensive computing and cyberinfrastructure, providing resources, services, and expertise to the national research community, including industry and academia. Learn more: https://www.sdsc.edu/

Human Vaccines Project

Related Immune System Articles:

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.