Nav: Home

Getting a grip on human-robot cooperation

February 13, 2019

There is a time when a successful cooperation between humans and robots has decisive importance: it is in the precise moment that one "actor" is required to hand an object to another "actor" and, therefore, to coordinate their actions accordingly. But how can we make this interaction more natural for robots?

The answer comes from the study entitled "On the choice of grasp type and location when handing over an object", published in Science Robotics by a research team of The BioRobotics Institute of Scuola Superiore Sant'Anna and the Australian Centre for Robotic Vision. The study reveals the guiding principles that regulate the choice of grasp type during an exchange of objects, encouraging cooperation between a robotic system and a person.

The study, conducted in 2018, analysed the behavior of people when they have to grasp an object and when, instead of using it themselves, they need to hand it over to a partner. The researchers investigated the grasp choice and hand placement on those objects during a handover when subsequent tasks are performed by the receiver. Passers tend to grasp the purposive part of the objects and leave "handles" unobstructed to the receivers. Intuitively, this choice allows receivers to comfortably perform subsequent tasks with the objects.

"We realised that, to date, insufficient attention has been given to the way a robot grasps an object in studies on human-robot interaction," explains Francesca Cini, PhD student of The BioRobotics Institute and one of the two principal authors of the paper. "This aspect is very pivotal in this field. For example, when we pass a screwdriver knowing that the receiver should use it, we leave the handle free to facilitate the grasp and the subsequent use of the object. The aim of our research is to transfer all these guiding principles onto a robotic system so that they will be used to select a correct grasp type and to facilitate the exchange of objects."

The impact of the collaborative study opens new scenarios of technological innovation, bringing benefits to various social activities where human-robot cooperation is well-established and yet to be established. Indeed, it would be possible to ameliorate the production steps in an industrial context while, in rehabilitation, robots could assist patients with more natural and effective results.

"Collaborative Robotics is the next frontier of both industrial and assistive robotics," says Marco Controzzi, researcher of The BioRobotics Institute and principal investigator of Human-Robot Interaction Lab. "For this reason, we need a new generation of robots designed to interact with humans in a natural way. These results will allow us to instruct the robot to manipulate objects as a human collaborator through the introduction of simple rules."

"Perhaps surprisingly, grasping and manipulation are regarded as very intuitive and straightforward actions for us humans," says Valerio Ortenzi, a Research Fellow at the Australian Centre for Robotic Vision and the other principal author of the paper. "However, they simply are not. We intended to shed a light on the behavior of humans while interacting in a common manipulation task and a handover is a perfect example where little adjustments are performed to best achieve the shared goal to safely pass an object from one person to the other."

"Real-world manipulation remains one of the greatest challenges in robotics and we strive to be the world leader in the research field of visually-guided robotic manipulation," says Australian Centre for Robotic Vision Director Peter Corke. "This research collaboration with Scuola Superiore Sant'Anna forms a vital partnership towards our goal of overcoming the last barrier to the ubiquitous deployment of truly useful robots into society. While most people don't think about picking up and moving objects - something human brains have learned over time through repetition and routine - for robots, grasping and manipulation is subtle and elusive."
-end-


Scuola Superiore Sant'Anna

Related Robots Articles:

Darn you, R2! When can we blame robots?
A recent study finds that people are likely to blame robots for workplace accidents, but only if they believe the robots are autonomous.
Robots need a new philosophy to get a grip
Robots need to know the reason why they are doing a job if they are to effectively and safely work alongside people in the near future.
How can robots land like birds?
Birds can perch on a wide variety of surfaces, thick or thin, rough or slick.
Soft robots for all
Each year, soft robots gain new abilities. They can jump, squirm, and grip.
Robots activated by water may be the next frontier
Columbia University scientists have developed material that can drive mechanical systems, with movements controlled by a pattern set into the design.
The robots that dementia caregivers want: robots for joy, robots for sorrow
A team of scientists spent six months co-designing robots with informal caregivers for people with dementia, such as family members.
Faster robots demoralize co-workers
A Cornell University-led team has found that when robots are beating humans in contests for cash prizes, people consider themselves less competent and expend slightly less effort -- and they tend to dislike the robots.
Increasing skepticism against robots
In Europe, people are more reserved regarding robots than they were five years ago.
Humans help robots learn tasks
With a smartphone and a browser, people worldwide will be able to interact with a robot to speed the process of teaching robots how to do basic tasks.
Robots as tools and partners in rehabilitation
Why trust should play a crucial part in the development of intelligent machines for medical therapies.
More Robots News and Robots Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.