Nav: Home

Immune cells consult with neighbors to make decisions

February 13, 2020

  • Immune system must strike a balance between reacting to a threat without overreacting
  • New research shows that immune cells 'count' how many of them have gathered to determine how much the system should react
  • Information could be used to design improved cancer immunotherapies or treatments for autoimmune diseases
EVANSTON, Ill. -- Many people consult their friends and neighbors before making a big decision. It turns out that cells also are consulting their neighbors in the human body.

Scientists and physicians have long known that immune cells migrate to the site of an infection, which individuals experience as inflammation -- swelling, redness and pain. Now, Northwestern University and University of Washington researchers have uncovered new evidence that this gathering is not just a consequence of immune activation. Immune cells count their neighbors before deciding whether or not the immune system should kick into high gear.

Understanding how to influence inflammation and activate an immune response could lead to new therapies to treat chronic autoimmune diseases or to mobilize the immune system to help fight cancer.

"This is a previously unrecognized aspect of immune function," said Northwestern's Joshua Leonard, who co-led the study. "The cells make a coordinated decision. They don't uniformly activate but instead collectively decide how many cells will activate, so that together, the system can fend off a threat without dangerously overreacting."

"A key part of this work relied on the development of new computational models to interpret our experiments and elucidate how cells perform calculations to make coherent decisions," said University of Washington's Neda Bagheri, who co-led the work with Leonard.

The research will be published on Feb. 13 in the journal Nature Communications.

Leonard is an associate professor of chemical and biological engineering at Northwestern's McCormick School of Engineering and a member of Northwestern's Center for Synthetic Biology. Bagheri is an associate adjunct professor of chemical and biological engineering at McCormick and an assistant professor of chemical engineering and biology and a Distinguished Washington Research Foundation Investigator at the University of Washington. The paper's first author is Joseph Muldoon, a graduate student in Northwestern's Interdisciplinary Biological Sciences Graduate Program, who is co-advised by Leonard and Bagheri.

The body's immune system is constantly working to maintain a delicate balance. When a threat is introduced, the system needs to respond strongly enough to fight off infection or disease but not so strongly that it causes harm.

"When it comes to immune responses, it's the difference between life and death," Leonard said. "If your body over-responds to a bacterial infection, then you could die from septic shock. If your body doesn't respond enough, then you could die from rampant infection. Staying healthy requires the body to strike a balance between these extremes."

Leonard, Bagheri and their teams wanted to better understand how the immune system makes these types of decisions.

"It's especially interesting because the immune system is decentralized," Muldoon said. "Immune cells are individual agents that need to work together, and nature has come up with a solution for how they can get on the same page. Cells arrive at different activation states, but in such a way that, on the whole, the population response is calibrated."

To explore this phenomenon, the researchers examined macrophages, a type of immune cell that is part of the first line of defense for combatting infection and disease. They observed how macrophages responded to a chemical produced by bacteria -- a red flag that alerts the body to the presence of infection -- using techniques that enabled the researchers to watch individual cells' responses over time. They then used computational models to help interpret and explain these observations.

"Over time, the cells observe their surroundings to get a sense of their neighbors," Muldoon said. "Each cell becomes poised to respond as a high activator or not. Now that we know there's this additional layer controlling the immune system, it opens up a whole avenue to study whether there are new targets for immunomodulation."

The researchers believe this information could be used to help design better drugs as well as to guide the engineering of advanced cell-based therapies.

"Biology has evolved so many fascinating and surprising ways to control complex processes," Leonard said. "As synthetic biologists, we work to engineer cells to perform customized therapeutic functions, such as activating the immune system locally at a tumor site but not throughout the patient. Understanding nature's innovations helps us to come up with new designs and enables us to be better engineers."
The study, "Macrophages employ quorum licensing to regulate collective activation," was supported by a Cornew Innovation Award from the Chemistry of Life Processes Institute at Northwestern University; the Northwestern University Physical Sciences-Oncology Center through National Institutes of Health award U54 CA143869-05; and National Institutes of Health Award 1R21AI131179-01A1.

More news at Northwestern Now

Find experts on our Faculty Experts Hub

Follow @NUSources for expert perspectives

Northwestern University

Related Immune System Articles:

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.