Nav: Home

Harnessing the sun to bring fresh water to remote or disaster-struck communities

February 13, 2020

Researchers at the University of Bath have developed a revolutionary desalination process that has the potential to be operated in mobile, solar-powered units.

The process is low cost, low energy and low maintenance, and has the potential to provide safe water to communities in remote and disaster-struck areas where fresh water is in short supply.

Developed by the university's Water Innovation and Research Centre in partnership with Indonesia's Bogor Agricultural University and the University of Johannesburg, the prototype desalination unit is a 3D-printed system with two internal chambers designed to extract and/or accumulate salt. When power is applied, salt cations (positively charged ions) and salt anions (negatively charged ions) flow between chambers through arrays of micro-holes in a thin synthetic membrane. The flow can only happen in one direction thanks to a mechanism that has parallels in mobile-phone technology. As a result of this one-way flow, salt is pumped out of seawater. This contrasts with the classical desalination process, where water rather than salt is pumped through a membrane.

Desalination, which turns seawater into fresh water, has become an essential process for providing drinking and irrigation water where freshwater is scarce. Traditionally, it has been an energy-intensive process carried out in large industrial plants.

Professor Frank Marken from the Department of Chemistry said: "There are times when it would be enormously beneficial to install small, solar-powered desalination units to service a small number of households. Large industrial water plants are essential to 21st Century living, but they are of no help when you're living in a remote location where drinking water is scarce, or where there is a coastal catastrophe that wipes out the fresh water supply."

The Bath desalination system is based on 'ionics', where a cationic diode (a negatively charged, semi-permeable membrane studded with microscopic pores) is combined with an anionic resistor (a device that only allows the flow of negative ions when power is applied).

"This amounts to a whole new process for removing salt from water," said Prof Marken. "We are the first people to use tiny micron-sized diodes in a desalination prototype."

He added: "This is a low-energy system with no moving parts. Other systems use enormous pressures to push the water through nano-pores, but we only remove the salts. Most intriguingly, the external pumps and switches can be replaced by microscopic processes inside the membrane - a little bit like biological membranes work."

Another benefit of the Bath desalination unit is that it also allows for the opposite process - the up-concentration of salt - thereby minimising waste. The separated salt can be crystallised and then used, potentially as a food supplement or a de-icer. Most other desalination processes pump salt in the form of brine back into the sea, unsettling the marine ecosystem.

All going well, Prof Marken believes his department could roll out a working mobile desalination unit within five years. First, however, the team needs to find more robust materials as well as collaborators to help refine the invention and scale it up. The proof-of-concept prototype is currently able to remove 50% of the salt from a saltwater sample, but to make seawater drinkable, the salt content needs to be reduced by 90%.

Budi Riza Putra, the Chemistry PhD student who led the project, said: "We need to find new and better porous materials capable of pumping ions. Membrane thickness, pore number and pore diameter must all be optimised. We hope to find materials experts who can help us with this."

In their quest to find new membranes, the researchers have turned their attention to biological materials. Along with Dr. Katarzyna Szot-Karpi?ska and her group at the Polish Academy of Sciences in Warsaw, they believe they are the first researchers to successfully use bacteriophages (viruses that infect and replicate within bacteria) to create a film capable of separating salt from water.

"Our bacteriophage (named M13) looks like spaghetti but is one-million times smaller," explains Mr Riza Putra. "If we make conditions a little acidic, the nano-spaghetti strands stick together, creating a thin film with tiny holes. When we tested this material as a membrane for desalination, we found it worked - it started acting as a diode, pumping ions in one direction only."

He added: "Before us, no-one thought about using viruses as membranes for water desalination."

However, while M13 shows potential as a membrane pump for water desalination, it is not perfect. "The substrate disintegrates as salt concentrations rise and at neutral pH," explains Prof Marken. "So, either we find a way to improve the semi-permeability of the bacteriophage material or we must find other, more robust ionic diode membrane alternatives."
-end-


University of Bath

Related Desalination Articles:

Harnessing the sun to bring fresh water to remote or disaster-struck communities
Researchers at the University of Bath have developed a revolutionary desalination process that has the potential to be operated in mobile, solar-powered units.
Simple, solar-powered water desalination
A completely passive solar-powered desalination system developed by researchers at MIT and in China could provide more than 1.5 gallons of fresh drinking water per hour for every square meter of solar collecting area.
Polluted wastewater in the forecast? Try a solar umbrella
Evaporation ponds, commonly used in many industries to manage wastewater, can occupy a large footprint and often pose risks to birds and other wildlife, yet they're an economical way to deal with contaminated water.
Australian desalination plant attracts fish
With growing populations and climate uncertainty, water security is a global concern.
How we transport water in our bodies inspires new water filtration method
A multidisciplinary group of engineers and scientists has discovered a new method for water filtration that could have implications for a variety of technologies, such as desalination plants, breathable and protective fabrics, and carbon capture in gas separations.
Palestinian farmers benefit from Birmingham water technology project
University of Birmingham scientists have worked with international students to produce prototype desalination equipment that could help Palestinian farmers avoid water shortages and grow crops efficiently.
Quantum destabilization of a water sandwich
When a thin layer of water is squeezed between two hydrophobic surfaces, the laws of classical physics break down.
Illinois engineer continues to make waves in water desalination
University of Illinois researcher Kyle Smith continues to build on his highly praised work to develop new methods of deionizing saltwater.
Scientists cook up new recipes for taking salt out of seawater
As populations boom and chronic droughts persist, coastal cities like Carlsbad in Southern California have increasingly turned to ocean desalination to supplement a dwindling fresh water supply.
Solar power with a free side of drinking water
An integrated system seamlessly harnesses sunlight to cogenerate electricity and fresh water.
More Desalination News and Desalination Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.