Nav: Home

Kazan University's telescope assists in discovering a binary star system

February 13, 2020

A co-author from Kazan University, Professor, Corresponding Member of the Tatarstan Academy of Sciences, Chair of the Department of Astronomy and Space Geodesy Ilfan Bikmaev, explains how the new system was found.

"The gravitational lensing method is one of the most powerful space exploration tools. In space, photons deviate from the rectilinear direction when passing near a massive body (star) under the influence of its gravitational field. If we take as a lens a celestial body, which is a sphere, then it will bend the space spherically symmetrically. However, the gravitational fields of many space objects do not have spherical symmetry, so more complex curvatures may appear. After their path has been curved, the photons will be summed up with those that hit the receiver earlier, and, as a result, an increase in the brightness of the star will occur. As a result, an increase in the brightness of the object is displayed on the light curve of the source, and this increase is not associated with a change in the physical parameters of the source itself.

"If between a star of our Galaxy and an observer on Earth a massive object (a star-lens) moves across the line of sight, then when the lens passes exactly upon the line of sight, the effect of gravitational lensing will manifest itself in the form of a short-term (hours to days) brightening of the background star. Such events are called gravitational microlensing events. They are quite rare, isolated, short-lived and unpredictable."

As the interviewee, in order to register a microlensing event in the Milky Way, you need to track the brilliance of hundreds of millions of stars daily. In particular, the space mission of the European Space Agency (GAIA) is engaged in this. Any brightness changes amounting to tens of percents from celestial sources that fall into the field of view of the GAIA space observatory are reported to Earth. And then the international network of telescopes around the globe begins to track these objects and identify the nature of variability.

"Since 2016, astronomers of Kazan Federal University, together with Turkish colleagues, have been participating in the GAIA satellite object classification program. The vast majority of variable objects are cataclysmic variables, some are supernovae, and some are active galactic nuclei, which change their brightness from time to time. But there are objects that, while not being a variable, change their brightness for a short period of time, and then it attenuates. Such cases are unique," says Bikmaev. "So, in August 2016, the GAIA satellite discovered an object that received the designation Gaia16aye, the brightness change of which exceeded the accuracy of registration of the telescope and continued to increase. Turkish colleagues, analyzing the nature of the brightness change, suggested that this is not a variable object, but the microlensing effect. Polish colleagues, experts in the field of research on the effects of microlensing, organized an international campaign on photometry of this source, which was soon joined by Kazan Federal University. Observations of this unique object were carried out both in Turkey with the RTT 150 telescope and at the North Caucasian Astronomical Station.

"The data obtained make it possible for the first time to simulate a situation where an observer on Earth makes a yearly motion around the Sun, a gravitating body moves in the form of a binary system around the center of mass, and the binary system has its own motion in the Galaxy. This is a rather complex kinematic movement. Therefore, the system of these maxima is complex. And what we can do is accurately measure the brightness change.

"With a single passage, a single maximum is observed, and then the brightness curve of the object drops to the initial level. In the case of the Gaia16aye event, after the first maximum, the light curve did not drop to the initial level. Therefore, astronomers have made the assumption that the gravitational lens is not a single object, but a binary system. And then the third peak appeared and everyone understood that it was, without a doubt, a binary system. Perhaps the geometry of the system is even more complex. In this article, a group of Polish scientists, based on international cooperative observations and their own theoretical calculations, built a geometric picture of the occurrence of the Gaia16aye microlensing phenomenon," concludes Professor Bikmaev.
-end-


Kazan Federal University

Related Gravitational Lensing Articles:

Quantum expander for gravitational-wave observatories
Gravitational-wave detectors use ultra-stable laser light stored in optical cavities to achieve the high sensitivity for detecting gravitational-wave signals from merging binary black holes and neutron stars.
How to observe a 'black hole symphony' using gravitational wave astronomy
New research led by Vanderbilt astrophysicist Karan Jani presents a compelling roadmap for capturing intermediate-mass black hole activity.
Worldwide observations confirm nearby 'lensing' exoplanet
Researchers using telescopes around the world confirmed and characterized an exoplanet orbiting a nearby star through a rare phenomenon known as gravitational microlensing.
Laser prototype for space-based gravitational wave detector
Researchers have announced a prototype for a laser at the heart of the first space-based gravitational wave observatory, known as the Laser Interferometer Space Antenna (LISA) mission.
Gravitational lensing provides a new measurement of the expansion of the universe
Amid ongoing uncertainty around the value of the Hubble Constant, uncertainty largely created by issues around measuring distances to objects in the galaxy, scientists who used a new distance technique have derived a different Hubble value, one 'somewhat higher than the standard value,' as Tamara Davis describes it in a related Perspective.
Gravitational waves leave a detectable mark, physicists say
New research shows that gravitational waves leave behind plenty of 'memories' that could help detect them even after they've passed.
DIY gravitational waves with 'BlackHoles@Home'
Researchers hoping to better interpret data from the detection of gravitational waves generated by the collision of binary black holes are turning to the public for help.
Gravitational waves will settle cosmic conundrum
Measurements of gravitational waves from approximately 50 binary neutron stars over the next decade will definitively resolve an intense debate about how quickly our universe is expanding, according to findings from an international team that includes University College London (UCL) and Flatiron Institute cosmologists.
LIGO and Virgo announce four new gravitational-wave detections
The LIGO and Virgo collaborations have now confidently detected gravitational waves from a total of 10 stellar-mass binary black hole mergers and one merger of neutron stars, which are the dense, spherical remains of stellar explosions.
Gravitational waves from a merged hyper-massive neutron star
For the first time astronomers have detected gravitational waves from a merged, hyper-massive neutron star.
More Gravitational Lensing News and Gravitational Lensing Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.