Nav: Home

Artificial intelligence finds disease-related genes

February 13, 2020

An artificial neural network can reveal patterns in huge amounts of gene expression data, and discover groups of disease-related genes. This has been shown by a new study led by researchers at Linköping University, published in Nature Communications. The scientists hope that the method can eventually be applied within precision medicine and individualised treatment.

It's common when using social media that the platform suggests people whom you may want to add as friends. The suggestion is based on you and the other person having common contacts, which indicates that you may know each other. In a similar manner, scientists are creating maps of biological networks based on how different proteins or genes interact with each other. The researchers behind a new study have used artificial intelligence, AI, to investigate whether it is possible to discover biological networks using deep learning, in which entities known as "artificial neural networks" are trained by experimental data. Since artificial neural networks are excellent at learning how to find patterns in enormous amounts of complex data, they are used in applications such as image recognition. However, this machine learning method has until now seldom been used in biological research.

"We have for the first time used deep learning to find disease-related genes. This is a very powerful method in the analysis of huge amounts of biological information, or 'big data'", says Sanjiv Dwivedi, postdoc in the Department of Physics, Chemistry and Biology (IFM) at Linköping University.

The scientists used a large database with information about the expression patterns of 20,000 genes in a large number of people. The information was "unsorted", in the sense that the researchers did not give the artificial neural network information about which gene expression patterns were from people with diseases, and which were from healthy people. The AI model was then trained to find patterns of gene expression.

One of the challenges of machine learning is that it is not possible to see exactly how an artificial neural network solves a task. AI is sometimes described as a "black box" - we see only the information that we put into the box and the result that it produces. We cannot see the steps between. Artificial neural networks consist of several layers in which information is mathematically processed. The network comprises an input layer and an output layer that delivers the result of the information processing carried out by the system. Between these two layers are several hidden layers in which calculations are carried out. When the scientists had trained the artificial neural network, they wondered whether it was possible to, in a manner of speaking, lift the lid of the black box and understand how it works. Are the designs of the neural network and the familiar biological networks similar?

"When we analysed our neural network, it turned out that the first hidden layer represented to a large extent interactions between various proteins. Deeper in the model, in contrast, on the third level, we found groups of different cell types. It's extremely interesting that this type of biologically relevant grouping is automatically produced, given that our network has started from unclassified gene expression data", says Mika Gustafsson, senior lecturer at IFM and leader of the study.

The scientists then investigated whether their model of gene expression could be used to determine which gene expression patterns are associated with disease and which is normal. They confirmed that the model finds relevant patterns that agree well with biological mechanisms in the body. Since the model has been trained using unclassified data, it is possible that the artificial neural network has found totally new patterns. The researchers plan now to investigate whether such, previously unknown patterns, are relevant from a biological perspective.

"We believe that the key to progress in the field is to understand the neural network. This can teach us new things about biological contexts, such as diseases in which many factors interact. And we believe that our method gives models that are easier to generalise and that can be used for many different types of biological information", says Mika Gustafsson.

Mika Gustafsson hopes that close collaboration with medical researchers will enable him to apply the method developed in the study in precision medicine. It may be possible, for example, to determine which groups of patients should receive a certain type of medicine, or identify the patients who are most severely affected.
-end-
The study has received financial support from the Swedish Foundation for Strategic Research (SSF) and the Swedish Research Council.

The article: "Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder", Sanjiv K. Dwivedi, Andreas Tjärnberg, Jesper Tegnér and Mika Gustafsson, Nature Communications, published online 12 February 2020, doi: 10.1038/s41467-020-14666-6 Link: https://www.nature.com/articles/s41467-020-14666-6

Linköping University

Related Learning Articles:

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.
Learning is optimized when we fail 15% of the time
If you're always scoring 100%, you're probably not learning anything new.
School spending cuts triggered by great recession linked to sizable learning losses for learning losses for students in hardest hit areas
Substantial school spending cuts triggered by the Great Recession were associated with sizable losses in academic achievement for students living in counties most affected by the economic downturn, according to a new study published today in AERA Open, a peer-reviewed journal of the American Educational Research Association.
Lessons in learning
A new Harvard study shows that, though students felt like they learned more from traditional lectures, they actually learned more when taking part in active learning classrooms.
Learning to look
A team led by JGI scientists has overhauled the perception of inovirus diversity.
Sleep readies synapses for learning
Synapses in the hippocampus are larger and stronger after sleep deprivation, according to new research in mice published in JNeurosci.
Learning from experience is all in the timing
Animals learn the hard way which sights, sounds, and smells are relevant to survival.
Learning language
When it comes to learning a language, the left side of the brain has traditionally been considered the hub of language processing.
When it comes to learning, what's better: The carrot or the stick?
Does the potential to win or lose money influence the confidence one has in one's own decisions?
Learning a second alphabet for a first language
A part of the brain that maps letters to sounds can acquire a second, visually distinct alphabet for the same language, according to a study of English speakers published in eNeuro.
More Learning News and Learning Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#555 Coronavirus
It's everywhere, and it felt disingenuous for us here at Science for the People to avoid it, so here is our episode on Coronavirus. It's ok to give this one a skip if this isn't what you want to listen to right now. Check out the links below for other great podcasts mentioned in the intro. Host Rachelle Saunders gets us up to date on what the Coronavirus is, how it spreads, and what we know and don't know with Dr Jason Kindrachuk, Assistant Professor in the Department of Medical Microbiology and infectious diseases at the University of Manitoba. And...
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.