Skyrmions like it hot: Spin structures are controllable even at high temperatures

February 13, 2020

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated the use of new spin structures for future magnetic storage devices has yet achieved another milestone. The international team is working on structures that could serve as magnetic shift registers, so called racetrack memory devices. This type of storage promises low access times, high information density, and low energy consumption. The new insights published in Nature Electronics shed light on the effects of temperature on the dynamics of skyrmions. According to the researchers' findings, skyrmions move more efficiently at higher temperatures and their trajectories only depend on the speed of the skyrmions. This makes device design significantly easier.

Skyrmions could serve as data bits for racetrack memory devices in the future

The teams at JGU and MIT observed billionfold reproducible motion of skyrmions, a new topologically stabilized spin structure that is a promising candidate to be used as data bits in the racetrack device. The latest experiments were carried out in thin films of magnetic material that stabilize skyrmions at and above room temperature, which is a feature that is required for any application. As it turned out, there currently are limits to the speed of a skyrmion caused by its deformations that will need to be overcome, possibly in antiferromagnetic materials.

"This is a great moment as we have worked for a long time to get this study completed. Now that we know that skyrmions can be moved billionfold and at high temperatures that are typical for the insides of a computer, we can focus on tackling the high-speed regime and get the device from its experimental state to being superior to existing storage technology," said Dr. Kai Litzius, lead author of the article. Litzius conducted this work at Johannes Gutenberg University Mainz, combined with a research stay at MIT. After finishing his PhD, he moved to the United States to work at MIT as a postdoctoral associate.

Cooperation with leading international partners as the cornerstone of successful research

"I am very happy to see the next step taken for using skyrmions as magnetic bits in novel devices. The international collaboration with leading partner universities is crucial to enable such work and such collaborations, and exchanges of people are a cornerstone of our graduate education programs," emphasized Professor Mathias Kläui, corresponding author of the paper. "With funding from the German Academic Exchange Service, the Collaborative Research Center CRC/TRR 173 Spin+X, and the Graduate Programs MAINZ - Materials Science in Mainz and MPGC - Max Planck Graduate Center with Johannes Gutenberg University Mainz, we foster these collaborations and exchanges that can be the stepping stone for the next career step."
-end-
Funding for the MAINZ Graduate School was approved in the 2007 German Excellence Initiative. In the second round in 2012, MAINZ was awarded further funding for another five years. One of its core research fields was spintronics, a field of research in which collaboration with leading international partners plays an important role. In 2019, the MAINZ Graduate School merged with the Max Planck Graduate Center with Johannes Gutenberg University Mainz (MPGC).

Johannes Gutenberg Universitaet Mainz

Related Skyrmions Articles from Brightsurf:

Magnetic nature of complex vortex-like structures in a Kagome crystal Fe3Sn2
Three-dimensional magnetic bubbles were demonstrated from the view of integral magnetizations for the first time, which clarify the physics behind complex multi-ring and arc-shaped vortices obtained from two-dimensional transmission electron microscopy magnetic imaging.

Twisting magnetization with light
A team of scientists led by the Max Born Institute (MBI), Berlin, Germany, and the Massachusetts Institute of Technology (MIT), Cambridge, USA, has demonstrated how tiny magnetization patterns known as skyrmions can be written into a ferromagnetic material faster than previously thought possible.

New shortcut enables faster creation of spin pattern in magnet
Physicists have discovered a much faster approach to create a pattern of spins in a magnet.

Nanostructures with a unique property
Nanoscale vortices known as skyrmions can be created in many magnetic materials.

Extra stability for magnetic knots
Tiny magnetic whirls that can occur in materials - so-called skyrmions - hold high promises for novel electronic devices or magnetic memory in which they are used as bits to store information.

Magnetic whirls crystallize in two dimensions
Cooperation within the TopDyn research center paves the way for the investigation of two-dimensional phases and phase transitions

Story tips: Cool smart walls, magnetism twist, fuel cost savings and polymers' impact
ORNL Story Tips: Cool smart walls, magnetism twist, fuel cost savings and polymers' impact, September 2020

FEFU scientists are paving way for future tiny electronics and gadgets
Scientists of the School of Natural Sciences of Far Eastern Federal University (SNS FEFU) with colleagues from Russia, South Korea, and Australia suggest the breaking new ground approach to manage spin-electronic properties and functionality of the thin-film magnetic nanosystems.

Deterministic reversal of single magnetic vortex circulation by an electric field
Chinese researchers discover a deterministic reversal of magnetic vortex circulation in a Ni79Fe21 (NiFe) island on top of a layered-perovskite Bi2WO6 (BWO) thin film using an electric field.

Study reveals magnetic process that can lead to more energy-efficient memory in computers
Researchers at Virginia Commonwealth University and the University of California, Los Angeles have made an important advance that could lead to more energy efficient magnetic memory storage components for computers and other devices.

Read More: Skyrmions News and Skyrmions Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.