Nav: Home

As groundwater depletes, arid American West is moving east

February 13, 2020

Even under modest climate warming scenarios, the continental United States faces a significant loss of groundwater - about 119 million cubic meters, or roughly enough to fill Lake Powell four times or one quarter of Lake Erie, a first-of-its-kind study has shown.

The results, published today in Nature Communications, show that as warming temperatures shift the balance between water supply and demand, shallow groundwater storage can buffer plant water stress - but only where shallow groundwater connections are present, and not indefinitely. As warming persists, that storage can be depleted - at the expense of vital connections between surface water, such as rivers, streams and water reservoirs underground.

"Even with a 1.5 degrees Celsius warming case, we're likely to lose a lot of groundwater," said Reed Maxwell, professor of hydrology at the Colorado School of Mines, who co-authored the paper with Laura Condon of the University of Arizona and Adam Atchley of Los Alamos National Laboratory. "The East Coast could start looking like the West Coast from a water standpoint. That's going to be a real challenge."

Most global circulation models don't take into account the lateral movement of water in the subsurface. Typically, they only include limited up-and-down movement, such as rain percolating from vegetation into the soil and roots pulling up water from the ground. In addition, these models tend to limit their scope to mere meters above or below ground.

This new study goes beyond that to simulate how water moves in the subsurface and connects with the land surface.

"We asked what would the response look like if we included the entire complexity of subsurface water movement in a large-scale simulation, and we think this is the first time this has been done," said Condon, lead author of the paper and assistant professor of hydrology and atmospheric sciences at the University of Arizona.

The calculations revealed a direct response of shallow groundwater storage to warming that demonstrates the strong and early effect that even low to moderate warming may have on groundwater storage and evapotranspiration.

In the western U.S., changes in groundwater storage may remain masked for a long time, the study revealed, because the groundwater there is already deep, and dropping levels would not have as great an effect on surface waters. Additionally, the region's vegetation is already largely water limited and adapted to being disconnected from deep groundwater sources.

However, the eastern U.S. will be much more sensitive to a lowering of the water table. Groundwater and surface water are more closely linked, and depleting the groundwater will be more disruptive to vegetation, streams and rivers. Many of the systems that have been put in place in the western U.S. for handling and managing water shortage are lacking in the eastern part of the country, as well.

The study revealed that regions in the eastern U.S. may reach a tipping point sooner rather than later, when vegetation starts to lose access to shallow groundwater as storage is depleted with warming.

"Initially, plants might not be experiencing stress because they still have existing shallow groundwater available, but as we continue to have warmer conditions, they can compensate less and less, and changes are more dramatic each year," Condon said. "In other words, shallow groundwater is buffering the response to warming, but when it's depleted, it can't do that anymore."

The study's simulations were set up to keep precipitation patterns the same and only increase atmospheric temperatures according to projections ranging from 1.5 to 4 degrees Celsius. Even with a modest 1.5 degrees Celsius of warming, 119 million cubic meters of storage were lost from groundwater - or four times the volume of Lake Powell, the largest reservoir in the Upper Colorado basin. At 4 degrees Celsius, groundwater losses were projected at 324 million cubic meters - roughly 10 times the volume of Lake Powell or enough to fill nearly three-quarters of Lake Erie.

"We are facing a crisis in global groundwater storage," Condon said. "Huge groundwater reservoirs are drying up at an alarming rate, and that's a problem because they nourish major growing regions around the world."
The research paper, "Evapotranspiration depletes groundwater under warming over the contiguous United States," is published in the open-access journal Nature Communications:

University of Arizona

Related Groundwater Articles:

As groundwater depletes, arid American West is moving east
Loss of groundwater may accelerate drying trends in the eastern United States, according to research that applied supercomputing to create an in-depth model of how groundwater will respond to warming.
Switching to solar and wind will reduce groundwater use
IIASA researchers explored optimal pathways for managing groundwater and hydropower trade-offs for different water availability conditions as solar and wind energy start to play a more prominent role in the state of California.
Groundwater studies can be tainted by 'survivor bias'
Bad wells tend to get excluded from studies on groundwater levels, a problem that could skew results everywhere monitoring is used to decide government policies and spending.
Groundwater resources in Africa resilient to climate change
Groundwater -- a vital source of water for drinking and irrigation across sub-Saharan Africa -- is resilient to climate variability and change, according to a new study led by UCL and Cardiff University.
Simple, accurate and inexpensive: A new method for exploring groundwater
Water is a vital resource for people and the environment.
Overlooked: How pumping groundwater impacts streams and vegetation
Pumping groundwater for uses like irrigation has decreased streamflow and plant water availability in the United States, according to the first large-scale simulation of surface water systems' sensitivity to water changes below ground.
Mapping groundwater's influence on the world's oceans
Researchers at The Ohio State University have created high-resolution maps of points around the globe where groundwater meets the oceans -- the first such analysis of its kind, giving important data points to communities and conservationists to help protect both drinking water and the seas.
Where will flooded fields best replenish groundwater?
Overpumping in California's Central Valley has depleted groundwater storage capacity and caused the land to sink.
New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.
Cryptosporidium parasite detected in Minnesota groundwater
When consumed in contaminated water, the microscopic parasite Cryptosporidium can cause symptoms of stomach cramps, diarrhea and fever.
More Groundwater News and Groundwater Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#555 Coronavirus
It's everywhere, and it felt disingenuous for us here at Science for the People to avoid it, so here is our episode on Coronavirus. It's ok to give this one a skip if this isn't what you want to listen to right now. Check out the links below for other great podcasts mentioned in the intro. Host Rachelle Saunders gets us up to date on what the Coronavirus is, how it spreads, and what we know and don't know with Dr Jason Kindrachuk, Assistant Professor in the Department of Medical Microbiology and infectious diseases at the University of Manitoba. And...
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at