Polymers to the rescue! Saving cells from damaging ice

February 13, 2020

Cell therapies hold great promise for revolutionizing the treatment of cancers and autoimmune diseases. But this multibillion-dollar industry requires long-term storage of cells at super-cold cryogenic conditions, while ensuring they'll continue to function upon thawing. However, these cold temperatures trigger the formation and growth of ice, which can pierce and tear apart cells. Research published in the Journal of the American Chemical Society by University of Utah chemists Pavithra Naullage and Valeria Molinero provides the foundation to design efficient polymers that can prevent the growth of ice that damages cells.

Nature's antifreeze

Current strategies to cryopreserve cells and organs involve bathing them with large amounts of dimethyl sulfoxide, a toxic chemical that messes up ice formation but stresses the cells, decreasing their odds for survival.

Nature, however, has found a way to keep organisms alive under extreme cold conditions: antifreeze proteins. Fish, insects and other cold-blooded organisms have evolved potent antifreeze glycoproteins that bind to ice crystallites and halt them from growing and damaging cells.

The growing area of cell-based therapeutics demands the development of potent inhibitors of ice recrystallization that can compete in activity with natural antifreeze glycoproteins but do not have the cost and toxicity of dimethyl sulfoxide. This demand has propelled the synthesis of polymers that mimic the action of antifreeze glycoproteins. But the most potent synthetic ice recrystallization inhibitor found to date, polyvinyl alcohol (PVA), is orders of magnitude less potent than natural glycoproteins.

"Efforts to identify stronger inhibitors for ice growth seem to have stalled, as there is not yet a molecular understanding of the factors that limits the ice recrystallization inhibition efficiency of polymers," Molinero says.

A hidden polymer design variable

How do molecules prevent ice crystals from getting bigger? Molecules that bind strongly to ice pin its surface--like stones on a pillow--making the ice front develop a curved surface around the molecules. This curvature destabilizes the ice crystal, halting its growth. Molecules that stay bound to ice for times longer than the time it takes to grow ice crystals succeed in preventing further growth and recrystallization.

Molinero and Naullage used large-scale molecular simulations to elucidate the molecular underpinnings of how flexibility, length and functionalization of polymers control their binding to ice and their efficiency to prevent ice growth. Their study shows that the bound time of the molecules at the ice surface is controlled by the strength of their ice binding coupled with the length of the polymer and how fast they propagate on the ice surface.

"We found that the efficiency of flexible polymers in halting ice growth is limited by the slow propagation of their binding to ice," Molinero says.

The study dissects the various factors that control the binding of flexible polymers to ice and that account for the gap in potency of PVA and natural antifreeze glycoproteins. In a nutshell, each block of antifreeze glycoproteins binds more strongly to ice than PVA does, and are also favored by their secondary molecular structure that segregates the binding and non-binding blocks to allow them to attach faster to ice to stop its growth.

"To our knowledge, this work is first to identity the time of propagation of binding as a key variable in the design of efficient ice-binding flexible polymers," Naullage says. "Our study sets the stage for the de novo design of flexible polymers that can meet or even surpass the efficiency of antifreeze glycoproteins and make an impact in biomedical research."
Find the full study here.

University of Utah

Related Polymers Articles from Brightsurf:

Seeking the most effective polymers for personal protective equipment
Personal protective equipment, like face masks and gowns, is generally made of polymers.

Ultraheavy precision polymers
An environmentally friendly and sustainable synthesis of ''heavyweight'' polymers with very narrow molecular weight distributions is an important concept in modern polymer chemistry.

FSU researchers help develop sustainable polymers
Researchers at the FAMU-FSU College of Engineering have made new discoveries on the effects of temperature on sustainable polymers.

Structural colors from cellulose-based polymers
A surface displays structural colors when light is reflected by tiny, regular structural elements in a transparent material.

Growing polymers with different lengths
ETH researchers have developed a new method for producing polymers with different lengths.

Exciting new developments for polymers made from waste sulfur
Researchers at the University of Liverpool are making significant progress in the quest to develop new sulfur polymers that provide an environmentally friendly alternative to some traditional petrochemical based plastics.

Polymers can fine-tune attractions between suspended nanocubes
In new research published in EPJ E, researchers demonstrate a high level of control over a type of colloid in which the suspended particles take the form of hollow, nanoscale cubes.

Functional polymers to improve thermal stability of bioplastics
One of the key objectives for contemporary chemistry is to improve thermomechanical properties of polymers, in particular, thermostability of bioplastics.

Fluorescent technique brings aging polymers to light
Modern society relies on polymers, such as polypropylene or polyethylene plastic, for a wide range of applications, from food containers to automobile parts to medical devices.

Polymers to the rescue! Saving cells from damaging ice
Research published in the Journal of the American Chemical Society by University of Utah chemists Pavithra Naullage and Valeria Molinero provides the foundation to design efficient polymers that can prevent the growth of ice that damages cells.

Read More: Polymers News and Polymers Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.