Nav: Home

Mechanism of controlling autophagy by liquid-liquid phase separation revealed

February 13, 2020

Under JST's Strategic Basic Research Programs, Noda Nobuo (Laboratory Head) and Fujioka Yuko (Senior Researcher) of the Institute of Microbial Chemistry, in collaboration with other researchers, discovered that a liquid-like condensate (liquid droplets(1)) in which the Atg protein is clustered through the liquid-liquid phase separation(2) is the structure responsible for the progression of autophagy.

Autophagy is one of the mechanisms through which cellular protein is degraded. Previously, it was known that Atg proteins assemble to form a structure called PAS(3). However, the mechanism through which Atg proteins assemble and the physicochemical property of the formed structures had been unclear.

The research team elucidated characteristics of PAS through observing the Atg protein using a fluorescence microscope and successfully reconstituted PAS in vitro. The team revealed, for the first time, that PAS is in the state of liquid droplets formed by liquid-liquid phase separation of Atg13 together with other Atg proteins and that this liquid droplet is responsible for autophagy.

The finding that liquid-liquid phase separation directly controls autophagy suggests its involvement in a wide range of intracellular life phenomena. Reconsideration of molecular mechanisms underlying various intracellular phenomena is expected to proceed. Moreover, development of autophagy-specific control agents that focus on the regulation of liquid-liquid phase separation in autophagy-related diseases is anticipated.
-end-
(1) Liquid droplet

A condensate of macromolecules with fluidity created when protein and/or nucleic acids undergo liquid-liquid phase separation. The droplets are also known as "membraneless organelles" and perform various functions within the cell. A droplet spontaneously assumes a spherical form. It also has high internal fluidity, and it actively exchanges molecules with its surroundings.

(2) Liquid-liquid phase separation

This is the phenomenon of a uniform liquid phase separating into multiple liquid phases. It is observed in daily life as the separation of water and oil, and occurs within cells with proteins and nucleic acids.

(3) PAS (Pre-autophagosomal structure)

The collected structure that the Atg protein forms near the vacuole under nutrient starvation in yeast is called PAS. It is assumed that autophagosomes formation starts at PAS.

Japan Science and Technology Agency

Related Autophagy Articles:

How cells decide the way they want to recycle their content
Researchers from Tokyo Medical and Dental University (TMDU) identified a new phosphorylation site of Ulk1 as a novel regulating mechanism of alternative autophagy.
Autophagy: Scientists discover novel role for self-recycling process in the brain
Proteins classically associated with autophagy regulate the speed of intracellular transport.
Insights into the diagnosis and treatment brain cancer in children
In a recent study published in Autophagy, researchers at Kanazawa University show how abnormalities in a gene called TPR can lead to pediatric brain cancer.
Autophagy degrades liquid droplets, but not aggregates, of proteins
Autophagy is a mechanism through which cellular protein is degraded.
Autophagy genes act as tumor suppressors in ovarian cancer
Researchers at the Medical University of South Carolina and University of California at San Diego report in PLOS Genetics that the loss of BECN1 promoted early ovarian cancer formation and genomic instability.
Mechanism of controlling autophagy by liquid-liquid phase separation revealed
Japanese scientists elucidated characteristics of PAS through observing the Atg protein using a fluorescence microscope and successfully reconstituted PAS in vitro.
New membranes for cellular recycling
Cells produce the shell of the autophagosomes on the spot.
West Nile virus triggers brain inflammation by inhibiting protein degradation
West Nile virus (WNV) inhibits autophagy -- an essential system that digests or removes cellular constituents such as proteins -- to induce the aggregation of proteins in infected cells, triggering cell death and brain inflammation (encephalitis), according to Hokkaido University researchers.
The molecule that can AUTAC bad proteins
Tohoku University researchers have developed a strategy that could help cells get rid of disease-related debris.
Clearing damaged cells out of the body helps heal diabetics' blood vessels
Research published today in Experimental Physiology shows that ramping up one of the body's waste disposal system, called autophagy, helps heal the blood vessels of diabetics.
More Autophagy News and Autophagy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.