Hydropower dams cool rivers in the Mekong River basin, satellites show

February 13, 2020

Hydropower dams, which use flowing water to turn a series of turbines to generate electricity, provide a source of energy that doesn't rely on fossil fuels. But they also disrupt the flow of rivers, and impact the fish and people that live there.

Scientists have been monitoring many environmental effects of dams, including how they affect a river's temperature -- and could potentially threaten the fish downstream.

Researchers at the University of Washington were interested in studying how several hydropower dams affected the temperature of three major rivers in Southeast Asia's Mekong River basin. Since 2001, each river has seen the construction of at least one major dam, with more planned. The three rivers converge into the Mekong River, which people rely on for fish and irrigation for rice and other crops.

Using 30 years of satellite data, the team discovered that within one year of the opening of a major dam, downstream river temperatures during the dry season dropped by up to 3.6 degrees F (2 degrees C). The cooling persisted where the rivers meet the Mekong River, which showed, at most, a 1.4 F (0.8 C) cooling. The researchers published their findings Feb. 13 in the journal Environmental Research Letters. The team is also speaking about related research Feb. 15 at the American Association for the Advancement of Science annual meeting in Seattle.

"People have modeled how far they could see a cooling effect after a hydropower dam goes in. In the U.S., that cooling tends to be localized around the dam. But what we see in the Mekong is like, 'Wow!'" said senior author Faisal Hossain, a civil and environmental engineering professor at the UW. "Everything has happened very dramatically in the last 20 years. Lots and lots of dams were just suddenly coming on, left and right. And now we can see this cooling effect that is no longer localized, but continuing into the river system. We've never seen anything like it, to the best of our knowledge."

The researchers used Landsat satellites to track changes in surface water temperature for the Sekong, Sesan and Srepok rivers. The satellites capture the heat, or infrared radiation, from the rivers.

"With these data, we're looking at the temperature emissions from the rivers. It's like night vision: Warmer things give off more emissions, colder things give off less," said lead author Matthew Bonnema, a postdoctoral researcher at NASA's Jet Propulsion Laboratory, who completed this research as a UW doctoral student in civil and environmental engineering. "These satellites have been predominantly used over land, not water, because you need to be looking at a big enough area. But there's almost 40 years of Landsat data that works great for large rivers that people are only recently starting to take advantage of."

Using satellite data to monitor river temperature has a caveat: clouds block the satellites' view of the Earth. So the team could only monitor changes during the region's dry season. Still, the researchers were able to detect decreases in river temperature within a year after major dams on all three rivers came online.

During dry season of 2001, the Sesan River had a 1.8 F (1 C) temperature drop, which corresponded with the completion of the Yali dam. Then, between 2008 and 2009, the temperature dropped by another 3.6 F (2 C) after two more dams -- the Sesan 4 and the Plei Krong -- were completed.

Similarly, in 2009, the Srepok River cooled by 2.5 F (1.4 C) in the dry season after a network of four dams came online.

And in 2015, the Sekong River temperature dropped 1.3 F (0.7 C) the year after the Xe Kaman dam was completed on the Xe Kaman River, a tributary to the Sekong.

These rivers also had sensors that monitored river temperature year-round between 2004 and 2011. Before 2009, all three rivers had a similar temperature pattern: The water started to warm up at the beginning of the dry season, around November or October, and then cooled off once the wet season started in April or May.

But after 2009, the Sesan and the Srepok rivers, which had major dams built during that time, stayed cool year-round.

"At the beginning of the wet season, the dams start to have more water than they can store, so they're letting it go in a controlled way," Bonnema said. "As the wet season goes on they're like, 'OK, let's fill up the reservoir' and hold the water. Then when dry season comes, they have this big water supply that they let out over the course of the dry season.

"If you look at the river flows after a dam goes in, you end up with more water in the dry season and less water in the wet season than before. The dry-season water also happens to be colder because it's pulled from deep within the reservoir. That brings the river temperature down closer to what it is in the wet season."

The team investigated whether anything else might be driving these temperature drops, such as air temperature, precipitation or land use in the surrounding region. Precipitation stayed mostly the same over the 30-year period. The air temperature showed a slight warming trend. The land around the rivers had been deforested during that period, but researchers said that is often linked to water warming, not cooling. That points to the role of the dams.

The Sekong, Sesan and Srepok rivers combine into one river, which eventually enters the Mekong River, a central feature of the Southeast Asian ecosystem. The team found that this infusion once warmed the Mekong so that the river was, at most, 0.72 F (0.4 C) warmer downstream of the confluence than it was upstream. But after 2001, the trend reversed, with the rivers now slightly cooling the Mekong River. The river is now up to 1.4 F (0.8 C) cooler -- not warmer -- downstream of the confluence.

The cooler water could have an effect on the fish that live downstream, the researchers said.

"They're going to keep building these dams," Bonnema said. "If you look at where new dams are planned in the 3S Basin, they're building closer and closer to the Mekong. These are also big dams, which means the impacts on the Mekong will likely be more significant -- these temperature changes are going to get more dramatic. So the question is how do we work with these dams to minimize their effect? My recommendation is that we slow down and think things through."
Additional co-authors on the paper are Bart Nijssen, research professor in the civil and environmental engineering, and Gordon Holtgrieve, associate professor of aquatic and fishery sciences at the UW. This research was funded a NASA Earth System and Science fellowship, the NASA Water Applied Science Program and the National Science Foundation.

For more information, contact Hossain at fhossain@uw.edu and Bonnema at matthew.g.bonnema@nasa.jpl.gov.

University of Washington

Related Environmental Engineering Articles from Brightsurf:

Strain engineering of 2D semiconductor and graphene
Strain engineering can significantly manipulate the two-dimensional (2D) materials' electronic and optical properties, which endow it the potential applications in optoelectronics and nanophotonics.

Increasing diversity and community participation in environmental engineering
Black, Hispanic, and Native American students and faculty are largely underrepresented in environmental engineering programs in the ) States.

A filter for environmental remediation
Scientists at Osaka University discovered a new method for producing sodium titanate mats nanostructured in a seaweed-like morphology for filtering heavy metal ions and radioactive materials from water.

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

Does MRI have an environmental impact?
Researchers from Tokyo Metropolitan University have surveyed the amount of gadolinium found in river water in Tokyo.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Environmental solutions to go global
New Australian technology that could fix some of the world's biggest environmental pollution problems -- oil spills, mercury pollution and fertiliser runoff -- will soon be available to global markets following the signing of a landmark partnership with Flinders University.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Read More: Environmental Engineering News and Environmental Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.