Guam research fills voids

February 14, 2016

Some ecological relationships among plants are robust and independent of geography. Expanding the validation of these relationships requires data from under-represented geographic regions and plant groups. Recent research on the Elaeocarpus joga tree from the island of Guam addressed these concerns, and the results appeared in the November 2015 issue of the journal HortScience.

Nutrient relations of native tree species from Guam and nearby islands have not been adequately studied to date, and the lack of research has caused this part of Oceania to be under-represented in several global research agendas. Ecologist Thomas Marler from the Western Pacific Tropical Research Center at the University of Guam partnered with conservationist John Lawrence from the United States Department of Agriculture Natural Resources Conservation Service to address this void.

Identifying nutrient limitations to plant growth is required for developing a full understanding of forest ecosystem production and nutrient cycling dynamics. The partners employed a combination of protocols including additions of nitrogen, phosphorus, or potassium to stimulate growth and comparisons of leaf nutrient levels with soil nutrient levels. Results pointed to nitrogen and potassium as limiting factors in Guam's limestone soils for this attractive native tree.

"Increased efforts toward conservation of large charismatic trees are limited by lack of local data," said Lawrence. "Even base-line information such as which macronutrients most limit growth of forest species in Guam's limestone soils is lacking. Understanding soil health is critical to inform actions that support sustained restoration of degraded landscapes to improve island ecosystem health."

The results also have the potential to add crucial data to the global database on leaf economic spectrum. This spectrum is comprised of various patterns of correlations among leaf traits. On one end of the spectrum are short-lived leaves that are relatively inexpensive to construct. These leaves are able to pay back their construction costs fairly rapidly. On the other end of the spectrum are long-lived leaves that are expensive to construct and maintain. The return on investment is longer for species that construct leaves with these traits. Data generated from case studies from western Pacific island nations are lacking from the global database.

One value of the leaf economic spectrum is that it explains most of the variation in ecological strategy among the thousands of species that have been studied. Therefore, one can obtain a small data set that characterizes the most important leaf traits of an under-studied species and make strong predictions about the ecological strategy of the species.

"We are hoping that this initial look at one important tree species will set the stage for more studies on other rare tree species in the western Pacific island nations," said Marler.

University of Guam

Related Nitrogen Articles from Brightsurf:

Chemistry: How nitrogen is transferred by a catalyst
Catalysts with a metal-nitrogen bond can transfer nitrogen to organic molecules.

Illinois research links soil nitrogen levels to corn yield and nitrogen losses
What exactly is the relationship between soil nitrogen, corn yield, and nitrogen loss?

Reducing nitrogen with boron and beer
The industrial conversion of nitrogen to ammonium provides fertiliser for agriculture.

New nitrogen products are in the air
A nifty move with nitrogen has brought the world one step closer to creating a range of useful products -- from dyes to pharmaceuticals -- out of thin air.

'Black nitrogen'
In the periodic table of elements there is one golden rule for carbon, oxygen, and other light elements.

A deep dive into better understanding nitrogen impacts
This special issue presents a selection of 13 papers that advance our understanding of cascading consequences of reactive nitrogen species along their emission, transport, deposition, and the impacts in the atmosphere.

How does an increase in nitrogen application affect grasslands?
The 'PaNDiv' experiment, established by researchers of the University of Bern on a 3000 m2 field site, is the largest biodiversity-ecosystem functioning experiment in Switzerland and aims to better understand how increases in nitrogen affect grasslands.

Reducing reliance on nitrogen fertilizers with biological nitrogen fixation
Crop yields have increased substantially over the past decades, occurring alongside the increasing use of nitrogen fertilizer.

Flushing nitrogen from seawater-based toilets
With about half the world's population living close to the coast, using seawater to flush toilets could be possible with a salt-tolerant bacterium.

We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.

Read More: Nitrogen News and Nitrogen Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to