Nav: Home

New metalloid oxide reducing bacteria found in Manitoba's Nopiming gold mine tailings

February 14, 2017

A new study published in the Canadian Journal of Microbiology has identified new toxic metalloid-reducing bacteria in highly polluted abandoned gold mine tailings in Manitoba's Nopiming Provincial Park. "These bacteria have the ability to convert toxic components that exist as a result of mining activities into less toxic forms and are prevalent in extreme environments," says Dr. Vladimir Yurkov, Professor at the University of Manitoba. These bacteria or their enzymes may be potential candidates for the development of bioremediation technologies, a treatment that uses naturally occurring organisms to break down toxic substances. "We wanted to look at the bacterial resistance to toxic waste, which would be an important asset within the context of heavily polluted mines. We also aimed to enrich our understanding of the microbial diversity of extreme environments, knowing that the vast majority of these microbes and their potential uses and benefits, remain undiscovered," continued Dr. Yurkov.

Aerobic anoxygenic phototrophs (AAPs) are a physiological group of bacteria that have been found in many different environments, including harsh or extreme environments. Habitats with extremely high concentrations of metalloid oxides are toxic, but AAPs are able to survive in these locales. They do so by converting the toxic compounds to less toxic forms through a process called reduction. Microbes capable of removing toxic compounds from their environment are potentially beneficial for bioremediation, the use of bacteria to clean up contaminated environments. By identifying bacteria that are capable of living in extreme conditions, candidates for bioremediation can be found.

The Central Gold Mine operated from 1927 to 1937, and although the mine was abandoned more than 75 years ago, the tailings, the byproducts left over from the operation, remain highly polluted with heavy metalloid oxides. To better understand the microbial diversity of these environments, researchers from the University of Manitoba isolated AAP strains from soil samples at four different sites within the Central Gold Mine tailings. Physiological study of five of the strains showed that they could grow under a wide range of temperature, acidity and salt content. Importantly, all of them were highly resistant to toxic metalloid oxides, and were able to convert toxic tellurite to the less toxic elemental form tellurium, a process which could potentially contribute to decontamination of the tailings.

The study also concluded that despite resembling previously discovered AAP, the five isolates characterized were phylogenetically unique, and may represent new species. These studies of microbial diversity are critical. "There are countless undiscovered microbes with unique abilities in every possible environment. Less than 1% of existing microbes are currently known in pure laboratory cultures. The majority of bacterial diversity is only theoretically indicated by DNA sequencing," says Dr. Yurkov.

This research makes important contributions to the fields of microbial diversity in extreme environments and bioremediation. Identification of novel microbes that can inhabit extreme environments that most other forms of life cannot tolerate could eventually lead to the development of tools for environmental detoxification. Added Dr. Yurkov, "Continually searching for these microbes and investigating details of their physiology and biochemistry could uncover the great potential of possible benefits for our society".
-end-
The paper, "Aerobic Anoxygenic Phototrophs in Gold Mine Tailings in Nopiming Provincial Park, Manitoba, Canada" by Elizabeth Hughes, Breanne Head, Chris Maltman, Michele Piercey-Normore and Vladimir Yurkov was published today in the Canadian Journal of Microbiology.

Canadian Science Publishing

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".